LANDSLIDE MONITORING AND FORECASTING IN UPPER YELLOW RIVER BY InSAR TECHNOLOGY BASED ON DATA ASSIMILATION THEORY
-
摘要:
黄河上游地区滑坡地质灾害分布广泛, 活动频繁, 危害严重. 传统的滑坡识别和监测方法均存在局限性. InSAR技术由于其精度高、可获取毫米级形变等特点被广泛应用于滑坡监测中. 但InSAR技术对影像相干性的要求较高, 导致其数据的离散程度较大, 无法获取到连续的形变数据, 对实际应用中利用监测的结果进行预报的能力造成了较大的影响. 而利用数据同化理论的建模方法, 可以对多尺度、多来源、多类型的数据进行协同处理以消除误差. 本文通过SBAS-InSAR技术获取地表的毫米级形变, 经由卡尔曼滤波算法对观测结果进行了数据同化. 单点实验的结果表明, 卡尔曼滤波之后的模拟结果较同化之前有了明显的提高, 验证了数据同化算法在提高数值模拟的精度上的可行性. 通过数据同化理论来产生连续的预报数据, 为InSAR技术监测和预报滑坡形变提供了一个新的思路.
Abstract:The landslides in the Upper Yellow River region are frequent and widely distributed, causing serious damage. Traditional landslide recognition and monitoring methods have limitation, while the InSAR technology, due to its high precision and extraction of millimeter-scale deformation, is widely used in landslide monitoring. However, the technique has a high requirement for image coherence, resulting in large dispersion degree of data and impossibility of obtaining continuous deformation data, which greatly impacts the forecasting application of the monitoring results. With the modeling method of data assimilation theory, the multiscale, multisource and multitype data can be coprocessed to eliminate errors. In this paper, the millimeter-scale deformation of surface is obtained by SBAS-InSAR technology, and the observed data is assimilated by Kalman filtering(KF) algorithm. The single point experiment shows that the simulation results after KF are significantly improved compared with those before the assimilation, which verifies the feasibility of data assimilation algorithm in improving the precision of numerical simulation. The continuous forecast data is generated by data assimilation theory, which provides a new way for InSAR technology to monitor and forecast landslide deformation.
-
Key words:
- optical remote sensing /
- InSAR /
- monitoring and forecasting /
- data assimilation /
- landslide /
- geological disaster
-
-
表 1 沉降点模型预报及卡尔曼滤波结果误差统计
Table 1. Error statistics of subsidence point model forecast and KF results
点号 1 2 3 4 5 6 模型RMES 0.00563 0.00516 0.00523 0.00498 0.00485 0.004190 卡尔曼滤波RMES 0.00150 0.00112 0.00137 0.00113 0.00113 0.001060 模型MAE -0.00134 -0.00087 -0.00080 -0.00042 0.00078 -0.000003 卡尔曼滤波MAE -0.00035 -0.00019 -0.00021 -0.00010 0.00018 -0.000001 表 2 摆动点、抬升点模型预报及卡尔曼滤波结果误差统计
Table 2. Error statistics of oscillating and lifting point model forecast and KF results
点号 7 8 9 10 模型RMES 0.00524 0.00422 0.00346 0.00495 卡尔曼滤波RMES 0.00125 0.00100 0.00088 0.00107 模型MAE -0.00026 -0.00128 -0.00025 0.00011 卡尔曼滤波MAE -0.00006 -0.00030 -0.00006 0.00002 -
[1] 许强, 朱星, 李为乐, 等. "天-空-地"协同滑坡监测技术进展[J]. 测绘学报, 2022, 51(7): 1416-1436. https://www.cnki.com.cn/Article/CJFDTOTAL-CHXB202207026.htm
Xu Q, Zhu X, Li W L, et al. Technical progress of space-air-ground collaborative monitoring of landslide[J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(7): 1416-1436. https://www.cnki.com.cn/Article/CJFDTOTAL-CHXB202207026.htm
[2] 张勤, 赵超英, 陈雪蓉. 多源遥感地质灾害早期识别技术进展与发展趋势[J]. 测绘学报, 2022, 51(6): 885-896. https://www.cnki.com.cn/Article/CJFDTOTAL-CHXB202206010.htm
Zhang Q, Zhao C Y, Chen X R. Technical progress and development trend of geological hazards early identification with multi-source remote sensing[J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(6): 885-896. https://www.cnki.com.cn/Article/CJFDTOTAL-CHXB202206010.htm
[3] 何玉花, 张东水, 韩用顺, 等. 因子分析在黄河上游干流地区滑坡灾害中的应用[J]. 防灾科技学院学报, 2017, 19(1): 1-8. doi: 10.3969/j.issn.1673-8047.2017.01.001
He Y H, Zhang D S, Han Y S, et al. Application of factor analysis in landslide disasters in the area of the main stream of the upper reaches of the Yellow River[J]. Journal of Institute of Disaster Prevention, 2017, 19(1): 1-8. doi: 10.3969/j.issn.1673-8047.2017.01.001
[4] 周保, 隋嘉, 孙皓, 等. 基于多源遥感数据的青海省地质灾害评价[J]. 自然灾害学报, 2022, 31(4): 231-240. https://www.cnki.com.cn/Article/CJFDTOTAL-ZRZH202204023.htm
Zhou B, Sui J, Sun H, et al. Evaluation of geological disasters in Qinghai Province based on multi-source remote sensing data[J]. Journal of Natural Disasters, 2022, 31(4): 231-240. https://www.cnki.com.cn/Article/CJFDTOTAL-ZRZH202204023.htm
[5] 张勤, 白正伟, 黄观文, 等. GNSS滑坡监测预警技术进展[J]. 测绘学报, 2022, 51(10): 1985-2000. doi: 10.11947/j.AGCS.2022.20220299
Zhang Q, Bai Z W, Huang G W, et al. Review of GNSS landslide monitoring and early warning[J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(10): 1985-2000. doi: 10.11947/j.AGCS.2022.20220299
[6] 朱建军, 胡俊, 李志伟, 等. InSAR滑坡监测研究进展[J]. 测绘学报, 2022, 51(10): 2001-2019. doi: 10.11947/j.AGCS.2022.20220294
Zhu J J, Hu J, Li Z W, et al. Recent progress in landslide monitoring with InSAR[J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(10): 2001-2019. doi: 10.11947/j.AGCS.2022.20220294
[7] 薛长虎. 基于改进粒子滤波的大型滑坡数据同化方法研究[D]. 武汉: 武汉大学, 2019.
Xue C H. Research on the assimilation method of large landslide data based on improved particle filtering[D]. Wuhan: Wuhan University, 2019.
[8] 麻源源, 左小清, 麻卫峰, 等. 利用数据同化技术实现InSAR和水准数据融合研究[J]. 工程勘察, 2019, 47(8): 49-55. https://www.cnki.com.cn/Article/CJFDTOTAL-GCKC201908008.htm
Ma Y Y, Zuo X Q, Ma W F, et al. Study on data fusion of InSAR and leveling by using data assimilation technology[J]. Geotechnical Investigation&Surveying, 2019, 47(8): 49-55. https://www.cnki.com.cn/Article/CJFDTOTAL-GCKC201908008.htm
[9] 蒋亚楠. 地质灾害监测中的SAR变形观测、解译与数据同化研究[J]. 测绘学报, 2018, 47(10): 1425. doi: 10.11947/j.AGCS.2018.20170565
Jiang Y N. SAR deformation measurement, interpretation and data assimilation in geological disaster monitoring[J]. Acta Geodaetica et Cartographica Sinica, 2018, 47(10): 1425. doi: 10.11947/j.AGCS.2018.20170565
[10] 李怀展, 查剑锋, 米丽倩. 基于卡尔曼滤波的D-InSAR和水准监测数据融合方法研究[J]. 大地测量与地球动力学, 2015, 35(3): 472-476. https://www.cnki.com.cn/Article/CJFDTOTAL-DKXB201503027.htm
Li H Z, Zha J F, Mi L Q. Study on the fusion method of D-InSAR and level monitoring data[J]. Journal of Geodesy and Geodynamics, 2015, 35(3): 472-476. https://www.cnki.com.cn/Article/CJFDTOTAL-DKXB201503027.htm
[11] 刘杰, 武震. 基于GIS的白龙江流域舟曲-武都段的滑坡危险性评价[J]. 地震工程学报, 2020, 42(6): 1723-1734. doi: 10.3969/j.issn.1000-0844.2020.06.1723
Liu J, Wu Z. Landslide risk assessment of the Zhouqu-Wudu section of Bailong River Basin based on geographic information system[J]. China Earthquake Engineering Journal, 2020, 42(6): 1723-1734. doi: 10.3969/j.issn.1000-0844.2020.06.1723
[12] 吴明堂, 薛正海, 崔振华, 等. 基于斜坡单元和证据权-logistic回归的滑坡易发性评价[J]. 人民长江, 2022, 53(10): 87-94. https://www.cnki.com.cn/Article/CJFDTOTAL-RIVE202210014.htm
Wu M T, Xue Z H, Cui Z H, et al. Landslide susceptibility evaluation of reservoir banks by evidence weight-logistic regression coupling model based on GIS slope unit[J]. Yangtze River, 2022, 53(10): 87-94. https://www.cnki.com.cn/Article/CJFDTOTAL-RIVE202210014.htm
[13] 王毅, 方志策, 牛瑞卿, 等. 基于深度学习的滑坡灾害易发性分析[J]. 地球信息科学学报, 2021, 23(12): 2244-2260. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXX202112012.htm
Wang Y, Fang Z C, Niu R Q, et al. Landslide susceptibility analysis based on deep learning[J]. Journal of Geo-Information Science, 2021, 23(12): 2244-2260. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXX202112012.htm
[14] 罗袆沅, 蒋亚楠, 许强, 等. 基于深度学习的滑坡位移时空预测[J]. 测绘学报, 2022, 51(10): 2160-2170. https://www.cnki.com.cn/Article/CJFDTOTAL-CHXB202210015.htm
Luo H Y, Jiang Y N, Xu Q, et al. A spatio-temporal network for landslide displacement prediction based on deep learning[J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(10): 2160-2170. https://www.cnki.com.cn/Article/CJFDTOTAL-CHXB202210015.htm
[15] 宋雨洋, 郝利娜, 严丽华, 等. 支持向量机在滑坡识别中的应用[J]. 兰州大学学报(自然科学版), 2022, 58(6): 727-734. https://www.cnki.com.cn/Article/CJFDTOTAL-LDZK202206003.htm
Song Y Y, Hao L N, Yan L H, et al. Application of the support vector machine in landslide identification[J]. Journal of Lanzhou University (Natural Sciences), 2022, 58(6): 727-734. https://www.cnki.com.cn/Article/CJFDTOTAL-LDZK202206003.htm
[16] 赵彬如, 陈恩泽, 戴强, 等. 基于水文-气象阈值的区域降雨型滑坡预测研究[J]. 测绘学报, 2022, 51(10): 2216-2225. https://www.cnki.com.cn/Article/CJFDTOTAL-CHXB202210020.htm
Zhao B R, Chen E Z, Dai Q, et al. Study on prediction of regional rainfall-induced landslides based on hydro-meteorological threshold[J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(10): 2216-2225. https://www.cnki.com.cn/Article/CJFDTOTAL-CHXB202210020.htm
[17] 姚闯闯, 姚鑫, 顾畛逵, 等. 基于InSAR识别的黄土高原活动性地质灾害发育规律分析[J]. 地质力学学报, 2022, 28(2): 257-267. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLX202202009.htm
Yao C C, Yao X, Gu Z K, et al. Analysis on the development law of active geological hazards in the Loess Plateau based on InSAR identification[J]. Journal of Geomechanics, 2022, 28(2): 257-267. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLX202202009.htm
[18] 黄龙, 孙倩, 胡俊. 基于InSAR与随机森林的滑坡敏感性评价与误差改正[J]. 测绘通报, 2022(10): 13-20. https://www.cnki.com.cn/Article/CJFDTOTAL-CHTB202210003.htm
Huang L, Sun Q, Hu J. Landslide sensitivity assessment and error correction based on InSAR and random forest method[J]. Bulletin of Surveying and Mapping, 2022(10): 13-20. https://www.cnki.com.cn/Article/CJFDTOTAL-CHTB202210003.htm
[19] 吴绿川, 王剑辉, 符彦. 基于InSAR技术和光学遥感的贵州省滑坡早期识别与监测[J]. 测绘通报, 2021(7): 98-102. https://www.cnki.com.cn/Article/CJFDTOTAL-CHTB202107019.htm
Wu L C, Wang J H, Fu Y. Early identifying and monitoring landslides in Guizhou province with InSAR and optical remote sensing[J]. Bulletin of Surveying and Mapping, 2021(7): 98-102. https://www.cnki.com.cn/Article/CJFDTOTAL-CHTB202107019.htm
[20] 李小来, 李海涛, 杨世强, 等. 基于高光谱数据和雷达融合的滑坡信息提取[J]. 长江科学院院报, 2023, 40(1): 184-190. https://www.cnki.com.cn/Article/CJFDTOTAL-CJKB202301027.htm
Li X L, Li H T, Yang S Q, et al. Landslide information extraction by fusion of hyper spectral and radar data[J]. Journal of Changjiang River Scientific Research Institute, 2023, 40(1): 184-190. https://www.cnki.com.cn/Article/CJFDTOTAL-CJKB202301027.htm
[21] 喜文飞, 赵子龙, 李国柱, 等. SBAS-InSAR技术与无人机影像融合的滑坡变形监测[J]. 测绘通报, 2022(10): 1-6. https://www.cnki.com.cn/Article/CJFDTOTAL-CHTB202210001.htm
Xi W F, Zhao Z L, Li G Z, et al. Landslide deformation monitoring based on the SBAS-InSAR technology and UAV image[J]. Bulletin of Surveying and Mapping, 2022(10): 1-6. https://www.cnki.com.cn/Article/CJFDTOTAL-CHTB202210001.htm
[22] 南骁聪, 刘俊峰, 张永选, 等. 基于多源时间序列的滑坡位移动态预测[J]. 人民珠江, 2023, 44(4): 54-62. https://www.cnki.com.cn/Article/CJFDTOTAL-RMZJ202304007.htm
Nan X C, Liu J F, Zhang Y X, et al. Dynamic prediction of landslide displacement based on multi-source time series[J]. Pearl River, 2023, 44(4): 54-62. https://www.cnki.com.cn/Article/CJFDTOTAL-RMZJ202304007.htm
[23] 李信, 阮明, 杨峰, 等. 基于GIS技术和信息量法的地质灾害易发性研究——以海南省昌江县为例[J]. 地质与资源, 2022, 31(1): 98-105. http://manu25.magtech.com.cn/Jweb_dzyzy/CN/abstract/abstract10369.shtml
Li X, Ruan M, Yang F, et al. Evaluation of geological hazard susceptibility based on GIS and information method: A case study of Changjiang County, Hainan Province[J]. Geology and Resources, 2022, 31(1): 98-105. http://manu25.magtech.com.cn/Jweb_dzyzy/CN/abstract/abstract10369.shtml
-