RESEARCH AND APPLICATION OF PERMAFROST DETECTION BASED ON ELECTRICAL RESISTIVITY TOMOGRAPHY
-
摘要:
多年冻土退化后,融区周期性冻结和融化作用会严重损害输油管道的稳定性. 为查明原油管道埋设区多年冻土分布、发育现状,计划分别采用二维、三维高密度电法进行探测. 为了进一步研究高密度电法不同探测方式的有效性和冻土的电阻率响应特征,首先在管道下部空间建立未融化、半融化、贯穿融化3种模型,采用EarthImager 2D和EarthImager 3D软件进行有限单元法正演和圆滑约束的最小二乘法反演; 随后根据数值模拟结果,对比研究3种模型电阻率响应特征及反演结果的差异性,总结二维、三维高密度电法勘探效果; 最后利用勘探实例进一步验证. 结果表明,高密度电法在多年冻土探测领域是一种行之有效的方法: 二维高密度电法对未融化、贯穿融化探测效果优于半融化状态; 三维高密度电法采集数据更加丰富,目标体形态展示更加直观精细,反演结果更加接近理论模型,适用各种冻土融化状态. 野外实例进一步验证了数值模拟结果,三维高密度电法的应用也对多年冻土精细探测领域提供了新思路.
Abstract:After degradation of permafrost, the periodic freezing and melting in thawing areas will seriously damage the stability of oil pipelines. The 2D and 3D electrical resistivity tomography(ERT) are used respectively to detect the distribution and development status of permafrost in the buried area of crude oil pipelines. To further study the effectiveness of different exploration modes of ERT and resistivity response characteristics of permafrost, firstly, three models for unthawed, half-thawed and through-thawed permafrost are established in the space beneath the pipeline, and EarthImager 2D and EarthImager 3D software are applied for the forward modeling of finite element method and smoothness constrained least-squares inversion. On the basis of numerical simulation results, then, the resistivity response characteristics and differences of inversion results between the three models are compared and the exploration effects of 2D and 3D ERT are summarized. Finally, the results are further verified by exploration practice. The results show that the ERT is an effective method in permafrost survey. The detection effect of 2D ERT on the unthawed and through-thawed permafrost is better than on half-thawed permafrost. The data collected by 3D ERT is more abundant, the display of object morphology is more intuitive and precise, and the inversion results are closer to the theoretical model, which is suitable for permafrost of various melting states. The field examples further verify the numerical simulation results, and the application of 3D ERT also provides a new idea in the field of permafrost fine detection.
-
Key words:
- electrical resistivity tomography /
- 2D model /
- 3D model /
- permafrost /
- crude oil pipeline
-
-
表 1 冻土区第四系冻土电阻率统计表
Table 1. Resistivity statistics of the Quaternary permafrost in permafrost region
岩性 含冰量 电阻率/Ωm 冻结 非冻结 黏性土 少冰冻土 200~400 20~100 多冰冻土 400~900 富冰冻土 900~2000 饱冰冻土 2000~5000 含土冰层 >5000 据文献[11]. 表 2 不同温度下岩心电阻率统计表
Table 2. Statistics of core resistivity at different temperatures
样品编号 采样深度/m 岩性 电阻率/Ωm 常温 -3~ -5 ℃ -15~ -18 ℃ 4-1 10.10 泥岩 857.9 3133.5 15733.1 4-2 14.35 粉细砂岩 1829.7 6677 33261 1-1 23.3 中细粒长石岩屑砂岩 3182.8 11351.6 72129.9 1-2 28.15 粉砂质泥岩 2578.2 17999.2 34647.2 1-3 42.05 粉砂岩 2426.7 9209.7 30603.4 1-4 65.05 粉细砂岩 3197.5 14440.5 29379.3 1-5 78.7 细粒岩屑砂岩 3926.2 17713.2 32321 1-6 83.85 中粒岩屑砂岩 2885.1 13353.6 42678.3 据文献[13, 20]. 表 3 二维反演过程收敛误差统计表
Table 3. Statistics of convergence error in 2D inversion process
模型 迭代次数 1 2 3 4 5 6 未融化 拟合误差/% 21.43 13.41 3.03 2.44 2.13 1.94 二阶范数L2 114.77 44.93 2.30 1.48 1.13 0.94 半融化 拟合误差/% 20.77 13.29 2.63 2.31 2.08 1.92 二阶范数L2 107.89 44.17 1.78 1.33 1.08 0.92 贯穿融化 拟合误差/% 20.27 12.83 2.81 2.38 2.11 1.86 二阶范数L2 102.72 41.18 1.97 1.42 1.11 0.87 表 4 三维反演过程收敛误差统计表
Table 4. Statistics of convergence error in 3D inversion process
模型 次数 1 2 3 未融化 拟合误差/% 13.8 5.4 4 二阶范数L2 5.3 1.1 0.6 半融化 拟合误差/% 14.7 5.7 3.8 二阶范数L2 7.7 1.2 0.6 贯穿融化 拟合误差/% 5.1 3.5 二阶范数L2 1.3 0.5 -
[1] 俞祁浩, 白旸, 金会军, 等. 应用探地雷达研究中国小兴安岭地区黑河-北安公路沿线岛状多年冻土的分布及其变化[J]. 冰川冻土, 2008, 30(3): 461-468. https://www.cnki.com.cn/Article/CJFDTOTAL-BCDT200803014.htm
Yu Q H, Bai Y, Jin H J, et al. The study of the patchy permafrost along the Heihe-Bei'an highway in Xiao Hinggan Mountains with ground penetrating radar[J]. Journal of Glaciology and Geocryology, 2008, 30(3): 461-468. https://www.cnki.com.cn/Article/CJFDTOTAL-BCDT200803014.htm
[2] 金会军, 于少鹏, 吕兰芝, 等. 大小兴安岭多年冻土退化及其趋势初步评估[J]. 冰川冻土, 2006, 28(4): 467-476. https://www.cnki.com.cn/Article/CJFDTOTAL-BCDT200604001.htm
Jin H J, Yu S P, Lü L Z, et al. Degradation of permafrost in the Da and Xiao Hinggan Mountains, Northeast China, and preliminary assessment of its trend[J]. Journal of Glaciology and Geocryology, 2006, 28(4): 467-476. https://www.cnki.com.cn/Article/CJFDTOTAL-BCDT200604001.htm
[3] 王银学, 赵林, 李韧, 等. 影响多年冻土上限变化的因素探讨[J]. 冰川冻土, 2011, 33(5): 1064-1067. https://www.cnki.com.cn/Article/CJFDTOTAL-BCDT201105014.htm
Wang Y X, Zhao L, Li R, et al. A study of factors which control variation of permafrost table[J]. Journal of Glaciology and Geocryology, 2011, 33(5): 1064-1067. https://www.cnki.com.cn/Article/CJFDTOTAL-BCDT201105014.htm
[4] 杨扬. 中俄原油管道及伴行道路对大兴安岭多年冻土热干扰研究[D]. 哈尔滨: 东北林业大学, 2017.
Yang Y. Study on China-Russia crude oil pipeline and accompanying road thermal interference on Greater Khingan permafrost[D]. Harbin: Northeast Forestry University, 2017.
[5] 贾立国, 吴继红. 高密度电法测量的应用及其在森林区的优势[J]. 地质与资源, 2014, 23(2): 181-183. doi: 10.13686/j.cnki.dzyzy.2014.02.017
Jia L G, Wu J H. Application of multi-electrode resistivity survey in forest-covered areas[J]. Geology and Resources, 2014, 23(2): 181-183. doi: 10.13686/j.cnki.dzyzy.2014.02.017
[6] Kneisel C, Hauck C, Fortier R, et al. Advances in geophysical methods for permafrost investigations[J]. Permafrost and Periglacial Processes, 2008, 19(2): 157-178. doi: 10.1002/ppp.616
[7] Kneisel C, Emmert A, Kästl J. Application of 3D electrical resistivity imaging for mapping frozen ground conditions exemplified by three casestudies[J]. Geomorphology, 2014, 210: 71-82. doi: 10.1016/j.geomorph.2013.12.022
[8] 周阜成. 圈定多年冻土的一种地球物理方法——偶极装置电位差比法[J]. 冰川冻土, 1982, 4(3): 41-52. https://www.cnki.com.cn/Article/CJFDTOTAL-BCDT198203004.htm
Zhou F C. Geophysical method for locating permafrost regions[J]. Journal of Glaciology and Geocryology, 1982, 4(3): 41-52. https://www.cnki.com.cn/Article/CJFDTOTAL-BCDT198203004.htm
[9] 朱占龙. 高密度电法在冻土勘察中的应用研究[J]. 工程地球物理学报, 2019, 16(5): 723-729. https://www.cnki.com.cn/Article/CJFDTOTAL-GCDQ201905030.htm
Zhu Z L. The application of high density electrical method to permafrost survey[J]. Chinese Journal of Engineering Geophysics, 2019, 16(5): 723-729. https://www.cnki.com.cn/Article/CJFDTOTAL-GCDQ201905030.htm
[10] 柳瑶, 胡照广, 姜华, 等. 应用高密度电阻率法探查高纬度冻土区地基下岛状冻土分布[J]. 森林工程, 2014, 30(6): 161-165. https://www.cnki.com.cn/Article/CJFDTOTAL-SSGC201406038.htm
Liu Y, Hu Z G, Jiang H, et al. Application of high-density resistance to detect island permafrost distribution under the foundation in high-latitude frozen regions[J]. Forest Engineering, 2014, 30(6): 161-165. https://www.cnki.com.cn/Article/CJFDTOTAL-SSGC201406038.htm
[11] 叶莉, 李非, 黄小年. 综合物探技术在东北公路工程多年冻土勘察中的应用与研究[J]. 灾害学, 2018, 33(S1): 25-29. https://www.cnki.com.cn/Article/CJFDTOTAL-ZHXU2018S1005.htm
Ye L, Li F, Huang X N. Application and research of comprehensive geophysical prospecting technology in permafrost exploration of northeast highway project[J]. Journal of Catastrophology, 2018, 33(S1): 25-19. https://www.cnki.com.cn/Article/CJFDTOTAL-ZHXU2018S1005.htm
[12] 贠正利, 黄小年. 综合物探方法在青藏工程走廊多年冻土辨识中的应用[J]. 工程勘察, 2019, 47(11): 71-78. https://www.cnki.com.cn/Article/CJFDTOTAL-GCKC201911012.htm
Yun Z L, Huang X N. Application of integrated geophysical method to identify permafrost in Qinghai-Tibet engineering corridor[J]. Geotechnical Investigation & Surveying, 2019, 47(11): 71-78. https://www.cnki.com.cn/Article/CJFDTOTAL-GCKC201911012.htm
[13] 白登海, 于辰. 电阻率层析成象理论和方法[J]. 地球物理学进展, 1995, 10(1): 56-75. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWJ501.005.htm
Bai D H, Yu C. Theory and methods of resistivity tomography[J]. Progress in Geophysics, 1995, 10(1): 56-75. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWJ501.005.htm
[14] 吴小平, 汪彤彤. 电阻率三维反演方法研究进展[J]. 地球物理学进展, 2002, 17(1): 156-162. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWJ200201024.htm
Wu X P, Wang T T. Progress of study on 3D resistivity inversion methods[J]. Progress in Geophysics, 2002, 17(1): 156-162. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWJ200201024.htm
[15] 施龙青, 翟培合, 魏久传, 等. 三维高密度电法技术在岩层富水性探测中的应用[J]. 山东科技大学学报(自然科学版), 2008, 27(6): 1-4. https://www.cnki.com.cn/Article/CJFDTOTAL-SDKY200806001.htm
Shi L Q, Zhai P H, Wei J C, et al. Application of 3D high density electrical technique in detecting the water enrichment of strata[J]. Journal of Shandong University of Science and Technology Natural Science, 2008, 27(6): 1-4. https://www.cnki.com.cn/Article/CJFDTOTAL-SDKY200806001.htm
[16] 施龙青, 翟培合, 魏久传, 等. 三维高密度电法在底板水探测中应用[J]. 地球物理学进展, 2009, 24(2): 733-736. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWJ201306055.htm
Shi L Q, Zhai P H, Wei J C, et al. Application of three-dimensional high density resistivity to detection of floor water[J]. Progress in Geophysics, 2009, 24(2): 733-736. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWJ201306055.htm
[17] 施龙青, 牛超, 翟培合, 等. 三维高密度电法在顶板水探测中应用[J]. 地球物理学进展, 2013, 28(6): 3276-3279. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWJ201306055.htm
Shi L Q, Niu C, Zhai P H, et al. Application of three-dimensional high density resistivity technique in detecting roof water[J]. Progress in Geophysics, 2013, 28(6): 3276-3279. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWJ201306055.htm
[18] 苏永军, 黄忠峰, 范翠松, 等. 三维高密度电法在海水入侵界面探测中应用——以莱州湾地区为例[J]. 地质调查与研究, 2018, 41(2): 134-137, 152. https://www.cnki.com.cn/Article/CJFDTOTAL-QHWJ201802009.htm
Su Y J, Huang Z F, Fan C S, et al. Application of the three-dimensional high density resistivity method to detection the interface of saltwater intrusion: A case study of Laizhou Bay[J]. Geological Survey and Research, 2018, 41(2): 134-137, 152. https://www.cnki.com.cn/Article/CJFDTOTAL-QHWJ201802009.htm
[19] 王志鹏, 刘江平, 易磊. 2D、3D高密度电法探测断层效果及其应用[J]. 科学技术与工程, 2019, 19(25): 75-82. https://www.cnki.com.cn/Article/CJFDTOTAL-KXJS201925011.htm
Wang Z P, Liu J P, Yi L. Effect and application of 2D and 3D high density resistivity method for fault detection[J]. Science Technology and Engineering, 2019, 19(25): 75-82. https://www.cnki.com.cn/Article/CJFDTOTAL-KXJS201925011.htm
[20] 张志厚, 刘国兴, 唐君辉, 等. 漠河地区天然气水合物远景调查之——电法探测岩石性永久冻层的应用研究[J]. 地球物理学进展, 2007, 22(3): 887-895. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWJ200703033.htm
Zhang Z H, Liu GX, Tang J H, et al. The prospective investigation of gas hydrate in Mohe region: The application research of using electrical method to explore the ever frozen layer[J]. Progress in Geophysics, 2007, 22(3): 887-895. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWJ200703033.htm
-