AGE AND CIRCULATION CHARACTERISTICS OF THE GROUNDWATER IN SHENYANG-FUSHUN SECTION OF HUNHE RIVER BASIN
-
摘要:
利用3H法对浑河流域沈阳-抚顺段浅层地下水年龄进行了计算. 通过对地下水年龄分区,进而分析其循环特征,为该地区地下水资源合理开发利用和城市资源环境承载力研究提供科学依据. 结果表明: 总体上,浑河流域沈阳-抚顺段地下水主要为近60 a以来补给的现代水,并且从东部山区至西部平原地区沿着地下水流向年龄逐渐增大. 年龄为小于30 a、30~60 a、大于60 a的地下水分布面积占研究区总面积的比例分别为34%、31%、35%. 流域上游为丘陵山区,含水层结构单一,颗粒较粗,地下水年龄小于30 a,地下水循环交替强烈. 流域中游含水层逐渐增厚,地下水循环交替强度逐渐减弱,地下水年龄增大为30~60 a. 流域下游含水层逐渐由单层转变为双层和多层,颗粒较细,地下水循环交替缓慢,地下水年龄也增大为大于60 a.
Abstract:The age of shallow groundwater in Shenyang-Fushun section of Hunhe River Basin is calculated with 3H isotopic method. Through the age zoning of groundwater and analysis of its circulation characteristics, the paper provides a scientific basis for the rational development and utilization of groundwater resources and study on carrying capacity of urban resources and environment. The results show that the groundwater in the Shenyang-Fushun section is mainly the modern water replenished in the past 60 years, and the age of groundwater flow increases gradually from the eastern mountainous area to the western plain. The distribution area of groundwater aged less than 30 a, 30-60 a and more than 60 a account for 34%, 31% and 35% of the total of the study area, respectively. The upper reaches of the basin are hilly and mountainous area, with single aquifer structure, coarse particles, groundwater age less than 30 a and strong groundwater circulation. The aquifer in the middle reaches thickens gradually, the alternation of groundwater circulation weakens gradually, and the groundwater age increases to 30-60 a. The aquifer in the lower reaches gradually changes from single layer to double layer and multilayer, with fine particles and slow water circulation, and the groundwater age increases to more than 60 a.
-
Key words:
- tritium /
- groundwater age /
- groundwater circulation /
- aquifer /
- Hunhe River Basin
-
-
表 1 样品测试结果
Table 1. Test results of water samples
样品号 3H/TU 样品号 3H/TU 样品号 3H/TU 样品号 3H/TU T01 11.6 T16 10.9 T31 11.0 T46 1.0 T02 10.1 T17 12.6 T32 9.8 T47 5.0 T03 10.5 T18 2.1 T33 15.7 T48 8.8 T04 10.8 T19 12.6 T34 5.5 T49 8.0 T05 2.8 T20 11.6 T35 10.7 T50 6.6 T06 9.4 T21 2.9 T36 7.5 T51 7.2 T07 10.6 T22 9.0 T37 9.7 T52 4.7 T08 4.2 T23 1.0 T38 1.0 T53 6.9 T09 11.0 T24 7.4 T39 10.8 T54 6.6 T10 11.5 T25 1.0 T40 10.9 T55 2.7 T11 10.1 T26 10 T41 12.3 T56 1.7 T12 11.0 T27 8.1 T42 10.3 T57 5.2 T13 10.4 T28 8.7 T43 8.6 T58 7.7 T14 3.9 T29 9.0 T44 3.6 T59 1.6 T15 4.8 T30 9.6 T45 9.9 T60 1.8 表 2 研究区大气降水3H浓度趋势面方程系数表
Table 2. Trend surface equation coefficients of 3H concentration of precipitation in the study area
年份 A B C 相关系数 1970 -7.29 9.80 676.67 0.93 1971 -6.32 14.07 436.02 0.99 1972 -3.00 6.43 225.98 0.99 1973 0.03 6.90 -167.28 0.89 1974 -2.65 5.78 190.60 0.99 1975 -2.05 5.50 120.49 0.99 1976 -1.54 4.40 84.11 0.99 1977 -1.52 4.26 88.33 0.99 1978 0.21 4.06 -116.81 0.89 1979 -0.88 3.31 28.08 0.94 1980 -2.16 4.25 156.41 0.98 1981 -1.92 4.28 130.09 0.97 1982 -0.95 1.92 72.79 0.97 1983 -2.04 2.46 201.91 0.98 表 3 地下水样品3H年龄计算结果
Table 3. 3H age calculation results of groundwater samples
样品号 年龄/a 样品号 年龄/a 样品号 年龄/a 样品号 年龄/a T01 12 T16 17 T31 17 T46 65 T02 16 T17 33 T32 44 T47 61 T03 28 T18 63 T33 7 T48 31 T04 17 T19 33 T34 42 T49 20 T05 63 T20 12 T35 15 T50 62 T06 19 T21 42 T36 38 T51 34 T07 28 T22 30 T37 44 T52 42 T08 61 T23 42 T38 42 T53 42 T09 17 T24 26 T39 17 T54 62 T10 14 T25 65 T40 17 T55 42 T11 16 T26 20 T41 18 T56 63 T12 17 T27 24 T42 29 T57 61 T13 29 T28 31 T43 37 T58 38 T14 61 T29 30 T44 61 T59 63 T15 61 T30 44 T45 20 T60 63 -
[1] 刘洋. 浑河流域水资源承载能力研究[D]. 沈阳: 沈阳农业大学, 2010.
Liu Y. Study on water resources carrying capacity of Hunhe River Basin[D]. Shenyang: Shenyang Agricultural University, 2010.
[2] 唐雯. 沈阳经济区地下水动态变化规律及污染防控对策研究[D]. 长春: 吉林大学, 2016.
Tang W. The research for countermeasures on dynamic change laws and the pollution prevention and control of groundwater in Shenyang Economic Zone[D]. Changchun: Jilin University, 2016.
[3] 王峰. 沈阳地铁疏干水利用方案研究[D]. 沈阳: 沈阳建筑大学, 2011.
Wang F. Project study on the utilization of engineering dewatering in subways of Shenyang[D]. Shenyang: Shenyang Jianzhu University, 2011.
[4] 佟鸿儒, 肖平. 抚顺西露天矿矿坑涌水的综合循环利用[J]. 露天采矿技术, 2010, 25(6): 45, 47. https://www.cnki.com.cn/Article/CJFDTOTAL-LTCM201006022.htm
Tong H R, Xiao P. Comprehensive recycling use of pit water in Fushun western surface mine[J]. Opencast Mining Technology, 2010, 25(6): 45, 47. https://www.cnki.com.cn/Article/CJFDTOTAL-LTCM201006022.htm
[5] 袁雅姝, 方珍, 傅金祥. 浑河流域沈抚段枯水期氮污染特征研究[J]. 沈阳建筑大学学报(自然科学版), 2016, 32(4): 726-736. https://www.cnki.com.cn/Article/CJFDTOTAL-SYJZ201604020.htm
Yuan Y S, Fang Z, Fu J X. Characteristics of nitrogen pollution in Shen Fu section of Hunhe River Basin during dry season[J]. Journal of Shenyang Jianzhu University (Natural Science), 2016, 32(4): 726-736. https://www.cnki.com.cn/Article/CJFDTOTAL-SYJZ201604020.htm
[6] 石旭飞, 代雅建, 崔健, 等. 沈阳城市地质环境问题研究[J]. 地质与资源, 2017, 26(4): 390-396. http://manu25.magtech.com.cn/Jweb_dzyzy/CN/abstract/abstract8558.shtml
Shi X F, Dai Y J, Cui J, et al. Study on the geological environment of Shenyang City[J]. Geology and Resources, 2017, 26(4): 390-396. http://manu25.magtech.com.cn/Jweb_dzyzy/CN/abstract/abstract8558.shtml
[7] 崔健, 李霄, 都基众, 等. 基于GIS的浑河冲洪积扇地浅层地下水防污性能评价[J]. 地质与资源, 2011, 20(2): 137-140. doi: 10.13686/j.cnki.dzyzy.2011.02.014
Cui J, Li X, Du J Z, et al. The GIS-based assessment of antipollution capacity of shallow groundwater in the alluvial fan of Hunhe River[J]. Geology and Resources, 2011, 20(2): 137-140. doi: 10.13686/j.cnki.dzyzy.2011.02.014
[8] 张亚丽. 基于稳定同位素与水化学的浑太河流域水循环特征与水体氮污染研究[D]. 重庆: 重庆交通大学, 2014.
Zhang Y L. Study on the characteristics of water cycle and nitrogen pollution in Hun River and Taizi River basin by using stable isotope and hydrochemical data[D]. Chongqing: Chongqing Jiaotong University, 2014.
[9] Clark I D, Fritz P. Environmental isotopes in hydrogeology[M]. Boca Raton: CRC Press, 1997: 20-23.
[10] Gibson J J, Edwards T W D, Birks S J, et al. Progress in isotope tracer hydrology in Canada[J]. Hydrological Processes, 2005, 19(1): 303-327. doi: 10.1002/hyp.5766
[11] 王文祥, 安永会, 李文鹏, 等. 基于环境同位素技术的张掖盆地地下水流动系统分析[J]. 水文地质工程地质, 2016, 43(2): 25-30. https://www.cnki.com.cn/Article/CJFDTOTAL-SWDG201602006.htm
Wang W X, An Y H, Li W P, et al. Groundwater flow system analysis of the Zhangye Basin based on environmental isotope techniques[J]. Hydrogeology & Engineering Geology, 2016, 43(2): 25-30. https://www.cnki.com.cn/Article/CJFDTOTAL-SWDG201602006.htm
[12] 蒋芳婷, 孟玉川, 宋泓苇, 等. 淮河下游地区地表水与地下水同位素特征分析[J]. 水文, 2022, 42(1): 90-96. https://www.cnki.com.cn/Article/CJFDTOTAL-SWZZ202201015.htm
Jiang F T, Meng Y C, Song H W, et al. Analysis of isotopic characteristics of surface water and groundwater in the lower reaches of Huaihe River[J]. Journal of China Hydrology, 2022, 42(1): 90-96. https://www.cnki.com.cn/Article/CJFDTOTAL-SWZZ202201015.htm
[13] 石旭飞, 赵海卿, 郭晓东. 基于同位素技术的珲春盆地浅层地下水可更新能力研究[J]. 水文, 2017, 37(4): 40-44. https://www.cnki.com.cn/Article/CJFDTOTAL-SWZZ201704008.htm
Shi X F, Zhao H Q, Guo X D. Study on renewability of shallow groundwater in Hunchun Basin based on isotope technology[J]. Journal of China Hydrology, 2017, 37(4): 40-44. https://www.cnki.com.cn/Article/CJFDTOTAL-SWZZ201704008.htm
[14] 石旭飞, 董维红, 李满洲, 等. 河南平原浅层地下水年龄[J]. 吉林大学学报(地球科学版), 2012, 42(1): 190-197. https://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ201201026.htm
Shi X F, Dong W H, Li M Z, et al. The age of shallow groundwater in Henan Plain[J]. Journal of Jilin University (Earth Science Edition), 2012, 42(1): 190-197. https://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ201201026.htm
[15] 苗晋祥. 基于同位素的豫北平原浅层地下水形成的认识[J]. 水文地质工程地质, 2010, 37(4): 5-11. https://www.cnki.com.cn/Article/CJFDTOTAL-SWDG201004004.htm
Miao J X. Formation of the shallow groundwater in the northern Henan Plain based on isotope analyses[J]. Hydrogeology & Engineering Geology, 2010, 37(4): 5-11. https://www.cnki.com.cn/Article/CJFDTOTAL-SWDG201004004.htm
[16] Shi X F, Dong W H, Li M Z, et al. Evaluation of groundwater renewability in the Henan Plains, China[J]. Geochemical Journal, 2012, 46(2): 107-115. doi: 10.2343/geochemj.1.0154
[17] 高淑琴. 河南平原第四系地下水循环模式及其可更新能力评价[D]. 长春: 吉林大学, 2008.
Gao S Q. Groundwater cycle pattern and renewability evaluation of groundwater in the Quaternary aquifer in Henan Plain[D]. Changchun: Jilin University, 2008.
[18] Shaw B R. Evaluation of distortion of residuals in trend surface analysis by clustered data[J]. Mathematical Geology, 1977, 9(5): 507-517. doi: 10.1007/BF02100962
[19] Sun L, Zhou X K, Lu J T, et al. Climatology, trend analysis and prediction of sandstorms and their associated dustfall in China[J]. Water, Air, & Soil Pollution: Focus, 2003, 3(2): 41-50.
[20] 王福刚. 同位素技术在黄河下游悬河段(河南段)水循环特征研究中的应用[D]. 长春: 吉林大学, 2006.
Wang F G. The application of isotope techniques in the hydrological cycle of overground section (Henan section) of the lower reaches of Yellow River[D]. Changchun: Jilin University, 2006.
-