PROSPECTING PROGRESS AND EXPLORATION DIRECTION OF COPPER DEPOSITS IN NORTHERN DAXINGANLING MOUNTAINS
-
摘要:
大兴安岭北段是大兴安岭成矿带的重要组成部分, 其中铜矿是北段的主要矿种, 以斑岩型为主, 矿床规模大, 经济价值和科学研究意义重大. 本文在系统总结大兴安岭北段区域地质背景、不同时代铜矿床成矿地质作用的的基础上, 综述了大兴安岭北段近年来找矿勘查的新成果, 并提出额尔古纳地块西缘、兴安地块东南缘及两地块缝合带处是寻找铜矿的重要方向, “就矿找矿”“攻深找盲”也是大兴安岭北段铜矿勘查的重点.
Abstract:The northern Daxinganling Mountains is an important part of Daxinganling metallogenic belt, where copper is the main mineral, dominated by porphyry type, large in scale, with great economic value and scientific research significance. Based on the systematic summary of regional geological background and mineralization process of copper deposits in different ages in northern Daxinganling Mountains, the paper summarizes the new exploration results in the area in recent years, and points out that the western margin of Ergun block, southeastern margin of Xing'an block, and suture zone of the two blocks are important for copper deposit prospecting. Attention should be also paid nearby the existing deposits and blind orebodies in the deep for the exploration of copper deposits in northern Daxinganling Mountains.
-
Key words:
- copper deposit /
- Ergun block /
- Xing'an block /
- metallogenic belt /
- ore prospecting /
- Daxinganling Mountains
-
-
图 2 铜山铜矿床1080勘探线矿体剖面图(据文献[53])
Figure 2.
表 1 大兴安岭北段典型铜多金属矿床特征
Table 1. Characteristics of typical copper polymetallic deposits in northern Daxinganling Mountains
矿床名称 地质背景 成矿时代 规模 成因类型 资料来源 多宝山 赋矿围岩为下—中奥陶统多宝山组,成矿岩体为早奥陶世花岗闪长岩及花岗闪长斑岩,矿床受北西向断裂构造控制;矿区内有晚三叠世更长花岗岩、角闪辉长岩产出,并零星发育黄铁矿化、绢云母化、绿帘石化、绿泥石化等蚀变;矿床经历晚三叠世铜矿化作用叠加 475±5.1 Ma、475.8±2.8 Ma、230.9±2.3 Ma 大型 斑岩型 文献[38-39] 铜山 赋矿围岩为下—中奥陶统多宝山组及铜山组,成矿岩体为早奥陶世花岗闪长岩,矿床受北西向断裂构造控制;英云闪长岩侵入多宝山组安山岩,可见绢云母化、碳酸盐化、高岭土化以及浸染状黄铁矿化等蚀变;矿床经历晚三叠世铜矿化作用叠加 472.4±2.9 Ma、229.4±3.5 Ma 大型 斑岩型 文献[40] 八大关 赋矿围岩为中上泥盆统大民山组流纹质火山岩和石炭系—二叠系小河里河群的凝灰砂岩、凝灰岩、安山岩夹炭质板岩及绿泥片岩,矿体主要产于晚三叠世花岗闪长斑岩内部,其次产于花岗闪长斑岩与围岩内接触带;矿床受褶皱轴部断裂构造控制 226.7±2.4 Ma、228.7±3.1 Ma 中型 斑岩型 文献[12-13, 41] 太平川 矿区围岩主要为新元古代粗—巨斑状中粒黑云母(钾长)二长花岗岩,赋矿岩石为晚三叠世花岗闪长斑岩,受北西向断裂构造控制 202.1±9.4 Ma、193.5±5.1 Ma 中型 斑岩型 文献[42] 乌奴格吐山 矿区围岩为中泥盆统乌奴耳组结晶灰岩、砂板岩,成矿后地层为上侏罗统满克头鄂博组酸性火山岩;侵入岩为晚三叠世黑云母花岗岩、花岗斑岩及含矿斑岩体早侏罗世二长花岗斑岩,矿体受二长花岗斑岩体控制,产于北西和北东两组断裂交汇部位 178±1 Ma、177.6±1.2 Ma 大型 斑岩型 文献[15, 43] 460高地 矿区内大面积出露晚三叠世—早侏罗世正长花岗岩及花岗闪长岩,脉岩主要有花岗细晶岩、花岗斑岩、闪长岩、闪长玢岩、石英等;北西向断裂为容矿构造 179.2±1.1 Ma 大型 斑岩型 文献[16] 三矿沟 矿区地层主要为奥陶系中统铜山组、多宝山组,下统裸河组,以及泥盆系中统腰桑南组,其中多宝山组是主要的矿源层;与成矿有关的侵入岩主要为早侏罗世花岗闪长岩 (200±1)~(185.7±3.2)Ma 小型 夕卡岩型 文献[44] 小柯勒河 矿区围岩为上奥陶统—上志留统吉祥沟组粉砂质板岩、变质砂岩和上侏罗统白音高老组酸性火山岩,侵入岩为晚侏罗世含矿花岗闪长斑岩及流纹斑岩,矿体受北东和北西两断裂交汇控制 147.3±0.8 Ma 大型 斑岩型 文献[18] 富克山 矿区分布早侏罗世二长花岗岩、石英二长岩和少量的花岗闪长斑岩,石英闪长玢岩为含矿岩体并侵入二长花岗岩,闪长玢岩和安山玢岩为成矿后脉岩;矿体主要受北西断裂控制 148.0±2.8 Ma 小型 斑岩型 文献[18] 霍洛台 矿区分布中-新元古界兴华渡口群兴华组二云斜长片麻岩、斜长角闪岩,侵入岩为晚侏罗世二长花岗岩及似斑状二长花岗岩;矿体产于似斑状二长花岗岩内,并受北东和北西向两组断裂交汇控制 146.9±2.3 Ma 小型 斑岩型 文献[45] 1077高地 矿区地层为上侏罗统满克头鄂博组酸性火山岩,侵入岩为晚侏罗世花岗闪长斑岩、花岗斑岩、石英闪长岩,花岗闪长斑岩与成矿关系密切 晚侏罗世 中型 斑岩型 李成禄等➊ 770高地 晚侏罗世花岗岩为主,另有少量花岗闪长岩、闪长玢岩、花岗斑岩等产出,发育北东向断裂构造 晚侏罗世 中型 斑岩型 张徐平等➋ 六九山 矿区主要出露下白垩统光华组酸性火山岩,侵入岩主要为不规则状或岩株状产出的花岗闪长岩,伴有呈脉状产出的正长斑岩、闪长玢岩等;矿区构造以北东向和北西向断裂发育为特征,两者联合控制火山机构分布,矿床发育在矿区东南部火山口的一侧 109~126 Ma 中型 斑岩型 文献[46] -
[1] 佘宏全, 常国雄, 李进文, 等. 内蒙古大兴安岭北段及邻区铜钼铅锌多金属矿床成矿时代分布规律[J]. 矿床地质, 2010, 29(S1): 499-501.
She H Q, Chang G X, Li J W, et al. Metallogenic epoch distribution of Cu-Mo-Pb-Zn polymetallic deposit in northern section of Greater Hinggan Mountains and adjacent areas of Inner Mongolia[J]. Mineral Deposits, 2010, 29(S1): 499-501. (in Chinese)
[2] 徐琳, 唐金荣. 我国铜资源供给风险识别及分析研究[J]. 北京大学学报(自然科学版), 2017, 53(3): 555-562.
Xu L, Tang J R. Copper supply risk identification and analysis study in China[J]. Acta Scientiarum Naturalium Universitatis Pekinensis, 2017, 53(3): 555-562.
[3] Mao J W, Pirajno F, Lehmann B, et al. Distribution of porphyry deposits in the Eurasian continent and their corresponding tectonic settings[J]. Journal of Asian Earth Sciences, 2014, 79: 576-584. doi: 10.1016/j.jseaes.2013.09.002
[4] 武广, 王国瑞, 刘军, 等. 大兴安岭北部主要金属矿床成矿系列和区域矿床成矿谱系[J]. 矿床地质, 2014, 33(6): 1127-1150. doi: 10.3969/j.issn.0258-7106.2014.06.001
Wu G, WangG R, Liu J, et al. Metallogenic series and ore-forming pedigree of main ore deposits in northern Great Xing'an Range[J]. Mineral Deposits, 2014, 33(6): 1127-1150. doi: 10.3969/j.issn.0258-7106.2014.06.001
[5] Xu W L, Pei F P, Wang F, et al. Spatial-temporal relationships of Mesozoic volcanic rocks in NE China: Constraints on tectonic overprinting and transformations between multiple tectonic regimes[J]. Journal of Asian Earth Sciences, 2013, 74: 167-193. doi: 10.1016/j.jseaes.2013.04.003
[6] Tang J, Xu W L, Wang F, et al. Geochronology, geochemistry, and deformation history of Late Jurassic-Early Cretaceous intrusive rocks in the Erguna Massif, NE China: Constraints on the Late Mesozoic tectonic evolution of the Mongol-Okhotsk orogenic belt[J]. Tectonophysics, 2015, 658: 91-110. doi: 10.1016/j.tecto.2015.07.012
[7] Li Z Z, Qin K Z, Li G M, et al. Neoproterozoic and Early Paleozoic magmatic records from the Chalukou ore district, northern Great Xing'an Range, NE China: Implications for tectonic evolution and Mesozoic Mo mineralization[J]. Journal of Asian Earth Sciences, 2018, 165: 96-113. doi: 10.1016/j.jseaes.2018.06.020
[8] Deng C Z, Sun D Y, Han J S, et al. Late-stage southwards subduction of the Mongol-Okhotsk oceanic slab and implications for porphyry Cu-Mo mineralization: Constraints from igneous rocks associated with the Fukeshan deposit, NE China[J]. Lithos, 2019, 326-327: 341-357. doi: 10.1016/j.lithos.2018.12.030
[9] Xu C H, Sun F Y, Fan X Z, et al. The Early Cretaceous tectonic evolution of the southern Great Xing'an Range, northeastern China: New constraints from A2-type granite and monzodiorite[J]. Canadian Journal of Earth Sciences, 2022, 59(3): 135-155. doi: 10.1139/cjes-2021-0041
[10] Zeng Q D, Liu J M, Chu S X, et al. Re-Os and U-Pb geochronology of the Duobaoshan porphyry Cu-Mo-(Au) deposit, Northeast China, and its geological significance[J]. Journal of Asian Earth Sciences, 2014, 79: 895-909. doi: 10.1016/j.jseaes.2013.02.007
[11] Liu J, Li Y, Zhou Z H, et al. The Ordovician igneous rocks with high Sr/Y at the Tongshan porphyry copper deposit, satellite of the Duobaoshan deposit, and their metallogenic role[J]. Ore Geology Reviews, 2017, 86: 600-614. doi: 10.1016/j.oregeorev.2017.02.036
[12] 李春风, 柳振江, 宓奎峰, 等. 内蒙古八大关斑岩型铜钼矿地球化学特征与成矿过程探讨[J]. 矿床地质, 2014, 33(S1): 215-216.
Li C F, Liu Z J, Mi K F, et al. Geochemical characteristics and metallogenic process of porphyry copper-molybdenum deposit in Badaguan, Inner Mongolia[J]. Mineral Deposits, 2014, 33(S1): 215-216. (in Chinese)
[13] 康永建, 向安平, 佘宏全, 等. 内蒙古八大关斑岩型Cu-Mo矿床成矿流体特征及成矿机制研究[J]. 地质学报, 2016, 90(8): 1778-1797. doi: 10.3969/j.issn.0001-5717.2016.08.010
Kang Y J, Xiang A P, She H Q, et al. The characteristics of ore-forming fluids and mineralization mechanism in the Badaguan porphyry Cu-Mo deposit, Inner Mongolia, NE China[J]. Acta Geologica Sinica, 2016, 90(8): 1778-1797. doi: 10.3969/j.issn.0001-5717.2016.08.010
[14] 秦克章, 李惠民, 李伟实, 等. 内蒙古乌奴格吐山斑岩铜钼矿床的成岩、成矿时代[J]. 地质论评, 1999, 45(2): 180-185. doi: 10.3321/j.issn:0371-5736.1999.02.011
Qin K Z, Li H M, Li W S, et al. Intrusion and mineralization ages of the Wunugetushan porphyry Cu-Mo deposit, Inner Mongolia, northwestern China[J]. Geological Review, 1999, 45(2): 180-185. doi: 10.3321/j.issn:0371-5736.1999.02.011
[15] 陈志广, 张连昌, 万博, 等. 内蒙古乌奴格吐山斑岩铜钼矿床低Sr-Yb型成矿斑岩地球化学特征及地质意义[J]. 岩石学报, 2008, 1: 115-128.
Chen Z G, Zhang L C, Wan B, et al. Geochemistry and geological significances of ore-forming porphyry with low Sr and Yb value in Wunugetushan copper-molybdenum deposit, Inner Mongolia[J]. Acta Petrologica Sinica, 2008, 24(1): 115-128.
[16] Kan J, Qin KZ, Wang L, et al. The influence of fluid-exsolving depth on mineralization quality: Evidence from biotite and zircon mineralogy and fluid inclusions from the 460 Gaodi porphyry Mo-Cu deposit, NE China[J]. Minerals, 2023, 13(5): 699. doi: 10.3390/min13050699
[17] 尚毅广, 孙丰月, 姜和芳, 等. 大兴安岭北段霍洛台铜铅锌矿区花岗闪长岩的岩石成因: 地球化学和锆石U-Pb年代学制约[J]. 世界地质, 2017, 36(2): 474-485. doi: 10.3969/j.issn.1004-5589.2017.02.014
Shang Y G, Sun F Y, Jiang H F, et al. Petrogenesis of granodiorites in Huoluotai Cu-Pb-Zn mining area: Constrain from geochemistry and zircon U-Pb geochronology, northern Daxing'anling[J]. Global Geology, 2017, 36(2): 474-485. doi: 10.3969/j.issn.1004-5589.2017.02.014
[18] 邓昌州. 大兴安岭北部中生代斑岩铜矿: 成岩与成矿[D]. 长春: 吉林大学, 2019: 1-236.
Deng C Z. Petrology and metallogenesis of the porphyry Cu depositsin the northern Great Xing'an Range[D]. Changchun: Jilin University, 2019: 1-236.
[19] Sun Y G, Li B L, Zhao Z H, et al. Late Jurassic adakitic ore-bearing granodiorite porphyry intrusions in the Xiaokele porphyry Cu (-Mo) deposit, Northeast China: Implications for petrogenesis and tectonic setting[J]. Acta Geochimica, 2021, 40(5): 702-717. doi: 10.1007/s11631-021-00485-z
[20] 宫永吉, 孙景贵, 刘阳. 再论大兴安岭中东部六九山铜矿床成矿地质特征、成因与成矿地质背景[J]. 吉林地质, 2020, 39(4): 1-10. doi: 10.3969/j.issn.1001-2427.2020.04.001
Gong Y J, Sun J G, Liu Y. A re-evaluation on the deposit geological features, genesis and metallogenic geological setting of Liujiushan Cu deposit in the central-eastern segment of the Greater Xing'an Range[J]. Jilin Geology, 2020, 39(4): 1-10. doi: 10.3969/j.issn.1001-2427.2020.04.001
[21] 杨元江, 吕长禄, 李科, 等. 黑龙江六九铜矿区岩浆岩年代学及成矿指示意义[J]. 矿物岩石, 2021, 41(3): 118-127.
Yang Y J, Lv C L, Li K, et al. Magmatic geochronology and metallogenic geological significance in Liujiu Cu deposit, Heilongjiang Province[J]. Mineralogy and Petrology, 2021, 41(3): 118-127.
[22] 王磊. 黑龙江省漠河县霍洛台铜钼矿床地质特征及找矿方向研究[D]. 长春: 吉林大学, 2018.
Wang L. Study on geological characteristics and prospecting direction of copper-molybdenum deposit in Helotai, Mohe County, Heilongjiang Province[D]. Changchun: Jilin University, 2018.
[23] 李文龙, 杨晓平, 钱程, 等. 大兴安岭北段富克山岩浆弧的组成: 对蒙古-鄂霍茨克洋南向俯冲的制约[J]. 地学前缘, 2022, 29(2): 146-163.
Li W L, Yang X P, Qian C, et al. Composition of the Fukeshan magmatic arc in the northern Great Xing'an Range: Constraints on the southward subduction of the Mongol-Okhotsk oceanic plate[J]. Earth Science Frontiers, 2022, 29(2): 146-163.
[24] 刘宝山, 程招勋, 寇林林, 等. 黑龙江多宝山地区晚三叠世岩浆活动对蒙古-鄂霍茨克洋南向俯冲的响应[J]. 地学前缘, 2022, 29(2): 132-145.
Liu B S, Cheng Z X, Kou L L, et al. Late Triassic magmatic activity in Duobaoshan area, Heilongjiang Province: Response to the southward subduction of the Mongol-Okhotsk Ocean[J]. Earth Science Frontiers, 2022, 29(2): 132-145.
[25] 佘宏全, 李红红, 李进文, 等. 内蒙古大兴安岭中北段铜铅锌金银多金属矿床成矿规律与找矿方向[J]. 地质学报, 2009, 83(10): 1456-1472. doi: 10.3321/j.issn:0001-5717.2009.10.010
She H Q, Li H H, Li J W, et al. The Metallogenetical characteristics and prospecting direction of the copper-lead-zinc polymetal deposits in the northern-central Daxing'anling Mountain, Inner Monglia[J]. Acta Geologica Sinica, 2009, 83(10): 1456-1472. doi: 10.3321/j.issn:0001-5717.2009.10.010
[26] 孙永刚. 大兴安岭北段晚侏罗世斑岩型铜(钼)矿床成矿作用及找矿方向研究[D]. 长春: 吉林大学, 2021.
Sun Y G. Study on metallogenesis and prospecting direction of Late Jurassic porphyry Cu (Mo) deposits in the northern segmentof the Great Xing'an Range[D]. Changchun: Jilin University, 2021.
[27] Zhang Y H, Xu W L, Tang J, et al. Age and provenance of the Ergunahe Group and the Wubinaobao Formation, northeastern Inner Mongolia, NE China: Implications for tectonic setting of the Erguna massif[J]. International Geology Review, 2014, 56(6): 653-671. doi: 10.1080/00206814.2013.877856
[28] Zhao S, Xu W L, Tang J, et al. Timing of formation and tectonic nature of the purportedly Neoproterozoic Jiageda Formation of the Erguna massif, NE China: Constraints from field geology and U-Pb geochronology of detrital and magmatic zircons[J]. Precambrian Research, 2016, 281: 585-601. doi: 10.1016/j.precamres.2016.06.014
[29] 许文良, 孙晨阳, 唐杰, 等. 兴蒙造山带的基底属性与构造演化过程[J]. 地球科学, 2019, 44(5): 1620-1646.
Xu W L, Sun C Y, Tang J, et al. Basement nature and tectonic evolution of the Xing'an-Mongolian orogenic belt[J]. Earth Science, 2019, 44(5): 1620-1646.
[30] 唐杰. 额尔古纳地块中生代火成岩的年代学与地球化学: 对蒙古-鄂霍茨克缝合带构造演化的制约[D]. 长春: 吉林大学, 2016: 1-189.
Tang J. Geochronology and geochemistry of the Mesozoic igneous rocks in the Erguna massif, NE China: Constraints on the tectonic evolution of the Mongol-Okhotsk suture zone[D]. Changchun: Jilin University, 2016: 1-189.
[31] 葛文春, 吴福元, 周长勇, 等. 大兴安岭中部乌兰浩特地区中生代花岗岩的锆石U-Pb年龄及地质意义[J]. 岩石学报, 2005, 21(3): 749-762.
Ge W C, Wu F Y, Zhou C Y, et al. Zircon U-Pb ages and its significance of the Mesozoic granites in the Wulanhaote region, central Da Hinggan Mountain[J]. Acta Petrologica Sinica, 2005, 21(3): 749-762.
[32] Zhao S, Xu W L, Wang W, et al. Geochronology and geochemistry of Middle-Late Ordovician granites and gabbros in the Erguna region, NE China: Implications for the tectonic evolution of the Erguna Massif[J]. Journal of Earth Science, 2014, 25(5): 841-853. doi: 10.1007/s12583-014-0476-9
[33] Feng Z Q, Jia J, Liu Y J, et al. Geochronology and geochemistry of the Carboniferous magmatism in the northern Great Xing'an Range, NE China: Constraints on the timing of amalgamation of Xing'an and Songnen blocks[J]. Journal of Asian Earth Sciences, 2015, 113: 411-426. doi: 10.1016/j.jseaes.2014.12.017
[34] Li Y, Xu W L, Wang F, et al. Geochronology and geochemistry of Late Paleozoic volcanic rocks on the western margin of the Songnen-Zhangguangcai Range massif, NE China: Implications for the amalgamation history of the Xing'an and Songnen-Zhangguangcai Range massif[J]. Lithos, 2014, 205: 394-410. doi: 10.1016/j.lithos.2014.07.008
[35] 胡新露. 大兴安岭北段-小兴安岭地区斑岩型铜、钼矿床成矿作用与岩浆活动[D]. 武汉: 中国地质大学, 2015: 1-174.
Hu X L. Mineralization and magmatism of the porphyry Cu, Mo deposits in the northern Great Xing'an and Lesser Xing'an Ranges[D]. Wuhan: China University of Geosciences, 2015: 1-174.
[36] 白令安. 大兴安岭中北部热液铜矿床的成矿机制与资源预测[D]. 长春: 吉林大学, 2013: 1-130.
Bai L A. Study on metallogenic mechanism and resource forecast of hydrothermal Cu deposits in the central and north of the Great Xing'an Range, NE China[D]. Changchun: Jilin University, 2013: 1-130.
[37] 李宇. 兴安地块中生代火成岩的年代学与地球化学: 对蒙古-鄂霍茨克构造体系演化的制约[D]. 长春: 吉林大学, 2018: 1-142.
Li Y. Geochronology and geochemistry of the Mesozoic igneous rocks in the Xing'an massif, NE China: Constraints on the evolution of the Mongol-Okhotsk tectonic regime[D]. Changchun: Jilin University, 2018: 1-142.
[38] 向安平, 杨郧城, 李贵涛, 等. 黑龙江多宝山斑岩Cu-Mo矿床成岩成矿时代研究[J]. 矿床地质, 2012, 31(6): 1237-1248. doi: 10.3969/j.issn.0258-7106.2012.06.009
Xiang A P, Yang Y C, Li G T, et al. Diagenetic and metallogenic ages of Duobaoshan porphyry Cu-Mo deposit in Heilongjiang Province[J]. Mineral Deposits, 2012, 31(6): 1237-1248. doi: 10.3969/j.issn.0258-7106.2012.06.009
[39] 赵超. 中亚造山带东段多宝山含金斑岩铜矿床多期岩浆-构造-成矿作用[D]. 北京: 中国科学院大学, 2019: 1-223.
Zhao C. Multistage magmatic-tectonic-mineralization of the Duobaoshan gold-bearing porphyry copper deposit in the eastern part of the Central Asian orogenic belt[D]. Beijing: University of Chinese Academy of Sciences, 2019: 1-223. (in Chinese)
[40] 郝宇杰. 黑龙江省多宝山矿集区成矿作用与成矿规律研究[D]. 长春: 吉林大学, 2015: 1-199.
Hao Y J. Mineralization and metallogenic regularity of Duobaoshan ore concentration area in Heilongjiang Province, Northeast China[D]. Changchun: Jilin University, 2015: 1-199.
[41] 康永建, 佘宏全, 向安平, 等. 内蒙古八大关矿区印支期岩浆活动及其找矿意义[J]. 中国地质, 2014, 41(4): 1215-1225. doi: 10.3969/j.issn.1000-3657.2014.04.015
Kang Y J, She H Q, Xiang A P, et al. Indo-Chinese magmatic activity in the Badaguan ore district of Inner Mongolia and its metallogenic implications[J]. Geology in China, 2014, 41(4): 1215-1225. doi: 10.3969/j.issn.1000-3657.2014.04.015
[42] 王召林, 李占龙, 郑小明. 内蒙古太平川钼铜矿床岩石地球化学、热液活动记录与年代学[J]. 矿产勘查, 2017, 8(2): 184-195. doi: 10.3969/j.issn.1674-7801.2017.02.001
Wang Z L, Li Z L, Zheng X M. Petrogeochemistry, records of hydrothermal activities and geochronology of the Taipingchuan Mo-Cu deposit, Inner Mongolia[J]. Mineral Exploration, 2017, 8(2): 184-195. doi: 10.3969/j.issn.1674-7801.2017.02.001
[43] 谭钢. 内蒙古乌奴格吐山斑岩铜钼矿床成矿作用研究[D]. 北京: 中国地质科学院, 2011: 1-91.
Tan G. The ore-forming processes and mineralization of Wunugetushan porphyry Cu-Mo deposit, Inner Mongolia[D]. Beijing: Chinese Academy of Geological Sciences, 2011: 1-91.
[44] 吕鹏瑞, 李德荣, 彭义伟, 等. 黑龙江三矿沟矽卡岩型Cu-Fe-Mo矿床矿石硫化物硫、铅同位素特征及锆石U-Pb定年[J]. 中国地质, 2012, 39(3): 717-728. doi: 10.3969/j.issn.1000-3657.2012.03.013
Lv P R, Li D R, Peng Y W, et al. S-Pb isotopic characteristics of ore sulfides and U-Pb dating of zircon from the Sankuanggou skarn-type Cu-Fe-Mo deposit in Heilongjiang Province[J]. Geology in China, 2012, 39(3): 717-728. doi: 10.3969/j.issn.1000-3657.2012.03.013
[45] Sun Y G, Li B L, Zhao Z H, et al. Age and petrogenesis of late Mesozoic intrusions in the Huoluotai porphyry Cu-(Mo) deposit, Northeast China: implications for regional tectonic evolution[J]. Geoscience Frontiers, 2022, 13(2): 101344. doi: 10.1016/j.gsf.2021.101344
[46] 王筱筝, 吕骏超, 胥嘉, 等. 黑龙江六九山铜银矿床地质特征[J]. 地质与资源, 2016, 25(2): 137-143. doi: 10.3969/j.issn.1671-1947.2016.02.007
Wang X Z, Lyu J C, Xu J, et al. Geological characteristics of the Liujiushan copper-silver deposit in Heilongjiang Province[J]. Geology and Resources, 2016, 25(2): 137-143. doi: 10.3969/j.issn.1671-1947.2016.02.007
[47] 蔡文艳. 黑龙江省多宝山矿集区铜-钼-金多金属成矿作用研究[D]. 长春: 吉林大学, 2020: 1-223.
Cai W Y. Metallogenesis of copper-molybdenum-gold polymetallic in the Duobaoshan orefield, Heilongjiang Province[D]. Changchun: Jilin University, 2020: 1-223.
[48] Zhang F F, Wang Y H, Liu J J, et al. Origin of the Wunugetushan porphyry Cu-Mo deposit, Inner Mongolia, NE China: Constraints from geology, geochronology, geochemistry, and isotopic compositions[J]. Journal of Asian Earth Sciences, 2016, 117: 208-224. doi: 10.1016/j.jseaes.2015.12.018
[49] Zhai M G, Santosh M. Metallogeny of the North China Craton: Link with secular changes in the evolving earth[J]. Gondwana Research, 2013, 24(1): 275-297. doi: 10.1016/j.gr.2013.02.007
[50] 王献忠, 宋贵斌, 公维国, 等. 黑龙江塔河宝兴沟金矿床地质特征及流体包裹体研究[J]. 黄金, 2014, 35(4): 19-25.
Wang X Z, Song G B, Gong W G, et al. Study on geological characteristics and fluid inclusions of Baoxinggou gold deposit in Tahe, Heilongjiang Province[J]. Gold, 2014, 35(4): 19-25.
[51] 李良, 孙丰月, 李碧乐, 等. 黑龙江省漠河县砂宝斯金矿床流体特征及矿床成因[J]. 地球科学——中国地质大学学报, 2015, 40(7): 1163-1176.
Li L, Sun F Y, Li B L, et al. Ore-forming fluid features and genesis of Shabaosi gold deposit in Mohe County, Heilongjiang Province[J]. Earth Science-Journal of China University of Geosciences, 2015, 40(7): 1163-1176.
[52] 王喜臣, 王训练, 王琳, 等. 黑龙江多宝山超大型斑岩铜矿的成矿作用和后期改造[J]. 地质科学, 2007, 42(1): 124-133. doi: 10.3321/j.issn:0563-5020.2007.01.011
Wang X C, Wang X L, Wang L, et al. Metallogeny and reformation of the Duobaoshan superlarge porphyry copper deposit in Heilongjiang[J]. Chinese Journal of Geology, 2007, 42(1): 124-133. doi: 10.3321/j.issn:0563-5020.2007.01.011
[53] 刘宝山, 程招勋, 邵军, 等. 黑龙江嫩江-黑河地区铜金多金属找矿新进展及勘查方向[J]. 地质与资源, 2022, 31(3): 331-341. doi: 10.13686/j.cnki.dzyzy.2022.03.008
Liu B S, Cheng Z X, Shao J, et al. Latest prospecting progress and exploration direction of copper-gold polymetallic deposits in Nenjiang-Heihe area, Heilongjiang Province[J]. Geology and Resources, 2022, 31(3): 331-341. doi: 10.13686/j.cnki.dzyzy.2022.03.008
[54] 付忠才. 黑龙江省呼玛县北西里钒钛磁铁矿成矿岩体特征[J]. 中国金属通报, 2019(11): 61, 63.
Fu Z C. Characteristics of ore-forming rock mass of vanadium-titanium magnetite in Beili, Huma County, Heilongjiang Province[J]. China Metal Bulletin, 2019(11): 61, 63. (in Chinese)
[55] 王朝亮. 黑龙江省新林区小柯勒河铜(钼)矿成矿与找矿模型研究[D]. 长春: 吉林大学, 2018: 1-72.
Wang C L. Study on the mineralization and prospecting model of Xiaokele River copper (molybdenum) ore in Xinlin District, Heilongjiang Province[D]. Changchun: Jilin University, 2018: 1-72.
[56] 孟凡波, 邓昌州, 冯雨周, 等. 大兴安岭北段晚中生代斑岩铜钼矿床成矿岩体黑云母地球化学特征及地质意义[J]. 矿物岩石地球化学通报, 2021, 40(4): 914-924.
Meng F B, Deng C Z, Feng Y Z, et al. Mineral geochemistry of biotites from the mineralized intrusive bodies in the Late Mesozoic porphyry Cu-Mo deposits, northern Great Xing'an range and its geological implications[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2021, 40(4): 914-924.
[57] 汤中立. 中国的小岩体岩浆矿床[J]. 中国工程科学, 2002, 4(6): 9-12. doi: 10.3969/j.issn.1009-1742.2002.06.003
Tang Z L. Magmatic ore deposits in small rockbody in China[J]. Engineering Science, 2002, 4(6): 9-12. doi: 10.3969/j.issn.1009-1742.2002.06.003
[58] 李文渊, 张照伟, 陈博. 小岩体成大矿的理论与找矿实践意义——以西北地区岩浆铜镍硫化物矿床为例[J]. 中国工程科学, 2015, 17(2): 29-34. doi: 10.3969/j.issn.1009-1742.2015.02.004
Li W Y, Zhang Z W, Chen B. The theory on small intrusions forminglarge deposits and its explorationsignificance: Taking for magmatic Ni-Cu sulfide deposits example in the northwestern of China[J]. Engineering Sciences, 2015, 17(2): 29-34. doi: 10.3969/j.issn.1009-1742.2015.02.004
[59] 陈志广, 张连昌, 卢百志, 等. 内蒙古太平川铜钼矿成矿斑岩时代、地球化学及地质意义[J]. 岩石学报, 2010, 26(5): 1437-1449.
Chen Z G, Zhang L C, Lu B Z, et al. Geochronology and geochemistry of the Taipingchuan copper-molybdenum deposit in Inner Mongolia, and its geological significances[J]. Acta Petrologica Sinica, 2010, 26(5): 1437-1449.
[60] 侯召硕. 内蒙古额尔古纳地区八大关铜钼矿床成因与构造背景[D]. 长春: 吉林大学, 2014: 1-56.
Hou Z S. Ore genesis and tectonic setting of Badaguan copper-molybdenum deposit in Erguna region, Inner Mongolia[D]. Changchun: Jilin University, 2014: 1-56.
[61] 刘翼飞, 聂凤军, 江思宏, 等. 蒙古国阿林诺尔钼矿床赋矿花岗岩年代学及地球化学特征[J]. 地球学报, 2010, 31(3): 343-349.
Liu Y F, Nie F J, Jiang S H, et al. The geochronology and geochemical features of ore-hosting granite in the Aryn Nuur molybdenum deposit, Mongolia[J]. Acta Geoscientica Sinica, 2010, 31(3): 343-349.
[62] Wang W, Tang J, Xu W L, et al. Geochronology and geochemistry of Early Jurassic volcanic rocks in the Erguna massif, Northeast China: Petrogenesis and implications for the tectonic evolution of the Mongol-Okhotsk suture belt[J]. Lithos, 2015, 218-219: 73-86. doi: 10.1016/j.lithos.2015.01.012
[63] 葛文春, 隋振民, 吴福元, 等. 大兴安岭东北部早古生代花岗岩锆石U-Pb年龄、Hf同位素特征及地质意义[J]. 岩石学报, 2007, 23(2): 423-440.
Ge W C, Sui Z M, Wu F Y, et al. Zircon U-Pb ages, Hf isotopic characteristics and their implications of the Early Paleozoic granites in the northeastern Da Hinggan Mts., northeastern China[J]. Acta Petrologica Sinica, 2007, 23(2): 423-440.
[64] 褚少雄, 刘建明, 徐九华, 等. 黑龙江三矿沟铁铜矿床花岗闪长岩锆石U-Pb定年、岩石成因及构造意义[J]. 岩石学报, 2012, 28(2): 433-450.
Chu S X, Liu J M, Xu J H, et al. Zircon U-Pb dating, petrogenesis and tectonic significance of the granodiorite in the Sankuanggou skarn Fe-Cu deposit, Heilongjiang Province[J]. Acta Petrologica Sinica, 2012, 28(2): 433-450.
[65] 盛继福, 傅先政. 大兴安岭中段成矿环境与铜多金属矿床地质特征[M]. 北京: 地震出版社, 1999.
Sheng J F, Fu X Z. Metallogenic environment and geological characteristics of copper polymetallic deposit in the middle part of the Greater Hinggan Mountains[M]. Beijing: Seismological Press, 1999. (in Chinese)
[66] Cooke D R, Hollings P, Walshe J L. Giant porphyry deposits: Characteristics, distribution, and tectonic controls[J]. Economic Geology, 2005, 100(5): 801-818. doi: 10.2113/gsecongeo.100.5.801
[67] Asadi S, Moore F, Zarasvandi A. Discriminating productive and barren porphyry copper deposits in the southeastern part of the central Iranian volcano-plutonic belt, Kerman region, Iran: A review[J]. Earth-Science Reviews, 2014, 138: 25-46. doi: 10.1016/j.earscirev.2014.08.001
[68] Deng C Z, Sun G Y, Sun D Y, et al. Origin of C type adakite magmas in the NE Xing'an block, NE China and tectonic implication[J]. Acta Geochimica, 2018, 37(2): 281-294. doi: 10.1007/s11631-017-0190-2
[69] 芮宗瑶, 张立生, 陈振宇, 等. 斑岩铜矿的源岩或源区探讨[J]. 岩石学报, 2004, 20(2): 229-238.
Rui Z Y, Zhang L S, Chen Z Y, et al. Approachon source rock or source region of porphyry copper deposits[J]. Acta Petrologica Sinica, 2004, 20(2): 229-238.
-