催化热解-冷原子吸收分光光度法测定硅酸盐中痕量汞

卢兵, 张锦涛, 谢旭, 徐伟, 姜士龙, 武洋. 催化热解-冷原子吸收分光光度法测定硅酸盐中痕量汞[J]. 地质与资源, 2024, 33(5): 733-738. doi: 10.13686/j.cnki.dzyzy.2024.05.014
引用本文: 卢兵, 张锦涛, 谢旭, 徐伟, 姜士龙, 武洋. 催化热解-冷原子吸收分光光度法测定硅酸盐中痕量汞[J]. 地质与资源, 2024, 33(5): 733-738. doi: 10.13686/j.cnki.dzyzy.2024.05.014
LU Bing, ZHANG Jin-tao, XIE Xu, XU Wei, JIANG Shi-long, WU Yang. DETERMINATION OF TRACE MERCURY IN SILICATES BY CATALYTIC PYROLYSIS-COLD ATOMIC ABSORPTION SPECTROPHOTOMETRY[J]. Geology and Resources, 2024, 33(5): 733-738. doi: 10.13686/j.cnki.dzyzy.2024.05.014
Citation: LU Bing, ZHANG Jin-tao, XIE Xu, XU Wei, JIANG Shi-long, WU Yang. DETERMINATION OF TRACE MERCURY IN SILICATES BY CATALYTIC PYROLYSIS-COLD ATOMIC ABSORPTION SPECTROPHOTOMETRY[J]. Geology and Resources, 2024, 33(5): 733-738. doi: 10.13686/j.cnki.dzyzy.2024.05.014

催化热解-冷原子吸收分光光度法测定硅酸盐中痕量汞

  • 基金项目:
    中国地质调查局项目“黑龙江省黑河三道湾子一带金矿资源潜力评价”(DD20230395)
详细信息
    作者简介: 卢兵(1977-), 男, 高级工程师, 主要从事自然资源综合调查样品测试方法研究, 通信地址黑龙江省哈尔滨市保健副路1号, E-mail//lubing_007@163.com
  • 中图分类号: P599

DETERMINATION OF TRACE MERCURY IN SILICATES BY CATALYTIC PYROLYSIS-COLD ATOMIC ABSORPTION SPECTROPHOTOMETRY

  • 硅酸盐中痕量汞测定对确定岩石中汞含量以及理论地球化学、勘查地球化学、生态和环境地球化学研究具有重要意义. 但汞在硅酸盐中分布是痕量级, 对分析方法检出限指标要求很高, 且硅酸盐中二氧化硅质量分数变化大、岩性分类多、干扰基体成分复杂和元素挥发损失等特性使得硅酸盐中痕量汞的准确测试面临挑战. 直接进样测汞仪无需化学试剂消解(防止汞元素挥发损失), 采用催化管(消除复杂基体干扰)和配置汞捕集装置(元素富集降低检出限)可提供符合绿色化学技术发展趋势的解决方案. 本文通过试验探究, 优化直接进样测汞仪的参数, 其方法检出限(0.5×10-9)、测定下限(2.0×10-9)、准确度(ΔlogC < 0.05)、精密度(RSD < 10%, n=12)等指标满足DZ/T 0130-2006中《多目标地球化学调查规范》要求, 达到或优于硅酸盐化学分析方法GB/T 14506.33-2019(汞量测定: 氢化物发生-原子荧光光谱法)的检出限(2×10-9)和定量下限(5×10-9), 可为硅酸盐样品中痕量汞的原子荧光测试和绿色化学技术更新提供参考.

  • 加载中
  • 图 1  低浓度汞测试标准曲线

    Figure 1. 

    表 1  直接测汞仪工作参数

    Table 1.  Specification of direct mercury analyzer

    序号 过程 温度/℃ 时间/s
    1 裂解 760 65
    2 催化 450 保持
    3 捕集 100 10
    4 释放 800 保持
    5 吸收 130 保持
    注: 测试时间4~5 min; 读数方式为峰高.
    下载: 导出CSV

    表 2  方法准确度和精密度试验

    Table 2.  Test results of method accuracy and precision

    标准样品 标准值Hg/10-9 测试值Hg/10-9 测试平均值Hg/10-9 对数差△logC 相对标准偏差RSD/% T值/T表值 显著性
    GBW07103 0.0041 0.0039  0.0046  0.0042  0.0048 0.00413 0.003 9.30 0.29/2.20
    0.0043  0.0042  0.0037  0.0038
    0.0045  0.0042  0.0038  0.0036
    GBW07107 0.0100 0.0101  0.0113  0.0098  0.0115 0.0103 0.014 9.24 1.29/2.20
    0.0095  0.0093  0.0108  0.0099
    0.0102  0.0091  0.0114  0.0111
    GBW07122 0.0033 0.0031  0.0031  0.0032  0.0035 0.0032 -0.004 5.48 0.62/2.20
    0.0036  0.0033  0.0035  0.0032
    0.0031  0.0032  0.0031  0.0033
    GBW07728 0.0035 0.0037  0.0031  0.0032  0.0034 0.0034 -0.008 8.44 0.77/2.20
    0.0036  0.0037  0.0039  0.0032
    0.0031  0.0031  0.0037  0.0035
    测试次数: n=12.
    下载: 导出CSV

    表 3  方法比对试验

    Table 3.  Comparison test results of methods

    标准样品 测试值Hg/10-9 S最大2 S最小2 f最小 f最大 F值/F表值 显著性
    GBW07103 0.0038  0.0043  0.0039  0.0041  0.0040 1.44E-07 3.70E-08 4 11 3.89/5.93
    GBW07107 0.0093  0.0096  0.0121  0.0115  0.1040 7.33E-07 1.45E-06 11 4 1.97/3.16
    GBW07122 0.0036  0.0033  0.0035  0.0032  0.0034 5.70E-08 3.15E-08 11 4 1.80/3.16
    GBW07728 0.0036  0.0037  0.0039  0.0032  0.0031 8.24E-08 4.3oE-08 4 11 1.92/5.93
    下载: 导出CSV

    表 4  样品比对试验

    Table 4.  Comparison test results of samples

    样品 方法 测试值Hg/10-9 平均值 平均偏差 标准偏差 相对标准偏差/%
    SYBH01 1 0.0032  0.0033  0.0033  0.0032  0.0032 0.0032 4.80E-05 5.48E-05 1.69
    2 0.0034  0.0031  0.0032  0.0030  0.0035 0.0032 1.68E-04 2.07E-04 6.40
    SYBH02 1 0.0083  0.0082  0.0084  0.0083  0.0084 0.0083 6.40E-05 8.37E-05 1.01
    2 0.0081  0.0086  0.0083  0.0082  0.0083 0.0083 1.20E-04 1.87E-04 2.25
    SYBH03 1 0.0041  0.0042  0.0041  0.0042  0.0041 0.0041 4.80E-05 5.48E-05 1.32
    2 0.0048  0.0045  0.0040  0.0040  0.0042 0.0043 2.80E-04 3.46E-04 8.06
    下载: 导出CSV
  • [1]

    《岩石矿物分析》编委会. 岩石矿物分析(第二分册): 岩石、非金属和黑色金属矿石分析[M]. 4版. 北京: 地质出版社, 2011.

    Editorial Board of Rock and Mineral Analysis. Rock and mineral analysis (Volume 2)[M]. 4th ed. Beijing: Geological Publishing House, 2011. (in Chinese)

    [2]

    迟清华. 汞在地壳、岩石和疏松沉积物中的分布[J]. 地球化学, 2004, 33(6): 641-648.

    Chi Q H. Abundance of mercury in crust, rocks and loose sediments [J]. Geochimica, 2004, 33(6): 641-648.

    [3]

    李卫东, 贾振清, 赵来社, 等. 壤中汞气测量方法在临江大松树金矿的应用[J]. 吉林地质, 2008, 27(4): 50-53, 73.

    Li W D, Jia Z Q, Zhao L S, et al. Application of soil mercury vapor survey method in the Dasongshu gold deposit, Linjiang region[J]. Jilin Geology, 2008, 27(4): 50-53, 73.

    [4]

    耿增超, 贾宏涛. 土壤学[M]. 2版. 北京: 科学出版社, 2020.

    Geng Z C, Jia H T. Soil science[M]. 2nd ed. Beijing: Science Press, 2020.

    [5]

    郭程程, 张军方, 余志, 等. 汞的土壤地球化学及其环境效应[J]. 环保科技, 2018, 24(4): 40-46.

    Guo C C, Zhang J F, Yu Z, et al. Pedogeochemistry of mercury and its environmental effects[J]. Environmental Protection and Technology, 2018, 24(4): 40-46.

    [6]

    韩永辉, 张明, 张万智. 地质样本中硅酸盐的化学分析[J]. 当代化工研究, 2019(8): 187-188.

    Han Y H, Zhang M, Zhang W Z. Chemical analysis of silicates in geological samples[J]. Modern Chemical Research, 2019(8): 187-188.

    [7]

    曹春华. 地质样品中金属元素的几种检测分析方法的比较[J]. 化工管理, 2019(35): 39-40.

    Cao C H. Comparison of several methods for metallic element determination in geological samples[J]. Chemical Enterprise Management, 2019(35): 39-40. (in Chinese)

    [8]

    胡王艳, 刘桦茜, 叶琼. 原子荧光光谱冷汞法测定碳酸钙中汞含量方法探讨[J]. 化工管理, 2019(26): 46-47.

    Hu W Y, Liu H Q, Ye Q. Discussion on determination of mercury content in calcium carbonate by catalytic pyrolysis cold atomic absorption[J]. Chemical Enterprise Management, 2019(26): 46-47. (in Chinese)

    [9]

    王岚, 张继龙, 黎春, 等. 催化热解冷原子吸收法直接测定铀矿石中的汞[J]. 世界核地质科学, 2020, 37(3): 226-230.

    Wang L, Zhang J L, Li C, et al. Direct determination of mercury in uranium ore by catalytic pyrolysis cold atomic absorption[J]. World Nuclear Geoscience, 2020, 37(3): 226-230.

    [10]

    郭欣, 金泽祥, 汤志勇. 在线流动注射液-液萃取非水介质汞还原原子荧光光谱法的研究及应用[J]. 光谱学与光谱分析, 2002, 22(1): 131-134.

    Guo X, Jin Z X, Tang Z Y. Study and application of flow injection liquid-liquid extraction non-aqueous media mercury reduction atomic fluorescence spectrometry[J]. Spectroscopy and Spectral Analysis, 2002, 22(1): 131-134.

    [11]

    赵小学, 吕利光, 陈纯, 等. 热解炉-金汞齐捕集-原子吸收法测定土壤中汞的注意事项[J]. 化学分析计量, 2015, 24(4): 85-88.

    Zhao X X, Lyu L G, Chen C, et al. Attention on the determination of total mercury in soils by pyrogenic furnace-gold amalgam trap-atomic absorption spectrophotometry[J]. Chemical Analysis and Meterage, 2015, 24(4): 85-88.

    [12]

    纪红兵, 佘远斌. 绿色化学化工基本问题的发展与研究[J]. 化工进展, 2007, 26(5): 605-614.

    Ji H B, She Y B. Development and research on basic issues of green chemistry and chemical technology[J]. Chemical Industry and Engineering Progress, 2007, 26(5): 605-614.

    [13]

    谢涛, 罗艳. 直接测汞仪测定土壤中的总汞[J]. 光谱实验室, 2012, 29(3): 1689-1691.

    Xie T, Luo Y. Determination of total mercury in soil by direct mercury analyzer[J]. Chinese Journal of Spectroscopy Laboratory, 2012, 29(3): 1689-1691.

    [14]

    黄旭敏. 直接测汞仪测定土壤和沉积物中总汞的方法验证分析[J]. 江西化工, 2022, 38(1): 56-60.

    Huang X M. Validation and analysis of direct mercury meter method for determination of total mercury in soil and sediment[J]. Jiangxi Chemical Industry, 2022, 38(1): 56-60.

    [15]

    罗明贵, 谢毓群, 李通耀, 等. 固体进样直接测定法测定锌精矿中汞[J]. 冶金分析, 2020, 40(9): 57-62.

    Luo M G, Xie Y Q, Li T Y, et al. Direct determination of mercury in zinc concentrate by solid sampling[J]. Metallurgical Analysis, 2020, 40(9): 57-62.

    [16]

    赵超, 王钊, 吴楠, 等. 固体进样-直接测汞仪测定铁矿石中的汞[J]. 现代矿业, 2018, 34(3): 232-233, 238.

    Zhao C, Wang Z, Wu N, et al. Determination of mercury in iron ores by solid injection-direct mercury analyzer[J]. Modern Mining, 2018, 34(3): 232-233, 238.

    [17]

    林建奇. 直接进样测汞仪测定地质样品中汞的应用研究[J]. 地质装备, 2020, 21(2): 27-30.

    Lin J Q. Study on the application of direct injection mercury detector in mercury determination of geological samples[J]. Equipment for Geotechnical Engineering, 2020, 21(2): 27-30.

    [18]

    中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会. GB/T 27417-2017合格评定化学分析方法确认和验证指南[S]. 北京: 中国标准出版社, 2017.

    General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China, Standardization Administration of the People's Republic of China. GB/T 27417-2017 Conformity assessment-Guidance on validation and verification of chemical analytical methods[S]. Beijing: Standards Press of China, 2017.

    [19]

    中华人民共和国国土资源部. DZ/T 0130-2006地质矿产实验室测试质量管理规范[S]. 北京: 中国标准出版社, 2006.

    Ministry of Land and Resources of the People's Republic of China. DZ/T 0130-2006 The specification of testing quality management for geological laboratories[S]. Beijing: Standards Press of China, 2006.

    [20]

    GB/T 14506.33-2019. 硅酸盐岩石化学分析方法第33部分: 砷、锑、铋、汞量测定氢化物发生——原子荧光光谱法[S]. http://c.gb688.cn/bzgk/gb/showGb?type=online&hcno=AF9C78635DB3EADE8DE039FA683833A1.

    GB/T 14506.33-2019. Methods for chemical analysis of silicate rocks-Part 33: Determination of arsenic, stibium, bismuth and mercury elements content: Hydride generation atominc fluorescence spectrometry [S]. http://c.gb688.cn/bzgk/gb/showGb?type=online&hcno=AF9C78635DB3EADE8DE039FA683833A1.

    [21]

    王恒, 赵秀荣, 黎香荣, 等. 碳酸钠固硫-直接测汞仪测定银精矿中汞[J]. 冶金分析, 2020, 40(7): 60-64.

    Wang H, Zhao X R, Li X R, et al. Determination of mercury in silver concentrate by direct mercury analyzer with sodium carbonate as sulfur-fixing agent[J]. Metallurgical Analysis, 2020, 40(7): 60-64.

    [22]

    武汉大学. 分析化学[M]. 6版. 北京: 高等教育出版社, 2020.

    Wuhan University. Analytical chemistry[M]. 6th ed. Beijing: Higher Education Press, 2020. (in Chinese)

    [23]

    郭鸿飞. F检验法和T检验法在方法验证过程中的应用探究[J]. 山西冶金, 2019, 42(4): 114-116.

    Guo H F. Research on the application of F-test and T-test in the process of method verification[J]. Shanxi Metallurgy, 2019, 42(4): 114-116.

  • 加载中

(1)

(4)

计量
  • 文章访问数:  204
  • PDF下载数:  88
  • 施引文献:  0
出版历程
收稿日期:  2023-07-14
修回日期:  2023-09-20
刊出日期:  2024-10-25

目录