EXTRACTION OF ALTERED MINERAL INFORMATION BASED ON WorldView-3 DATA: An Application of Pobei Area in Xinjiang
-
摘要:
使用WorldView-3数据, 采用主成分分析法, 确定反映铁氧化物、含Al(OH)矿物、含Fe, Mg(OH)矿物的主成分, 利用主成分提取新疆坡北地区蚀变矿物信息, 预测成矿远景区. 采用主成分分析法分析了WorldView-3数据的主成分特征向量矩阵, 使用USGS波谱库分析了蚀变矿物组合的吸收反射波谱特征. 上述二者共同确定了反映蚀变矿物信息的主成分. 利用确定的主成分采用密度分割法, 并结合遥感地质解译图提取蚀变矿物信息. 利用已提取的蚀变矿物信息, 结合研究区内含矿地层、与矿化相关的石英脉、控制矿体分布的北东向断裂构造, 预测成矿远景区.
-
关键词:
- WorldView-3 /
- 主成分分析法 /
- 蚀变矿物 /
- 成矿远景区 /
- 新疆
Abstract:Based on the WorldView-3 data, the principal component analysis (PCA) is adopted to determine the principal components reflecting iron oxides, and Al(OH)-bearing and Fe, Mg(OH)-bearing minerals, by which the altered mineral information in Pobei area of Xinjiang is extracted to predict the metallogenic prospect area. The principal component eigenvector matrix of WorldView-3 data is analyzed by PCA, and USGS spectral library is used to analyze the absorption reflectance spectra characteristics of altered mineral associations, which both determine the principal components reflecting altered mineral information. Based on the determined principal components, the density slicing method are used, with remote sensing interpretation map, for the extraction of altered mineral information. With the extracted altered mineral information, the metallogenic prospect area is predicted by combining with the ore-bearing strata, quartz veins related with mineralization, and NE-trending fault structure controlling the distribution of orebodies in the area.
-
Key words:
- WorldView-3 /
- principal component analysis /
- altered mineral /
- metallogenic prospect area /
- Xinjiang
-
-
表 1 WorldView-3数据波段特点
Table 1. Characteristics of WorldView-3 data band
波段号 波段 中心波长/μm 空间分辨率/m 波段号 波段 中心波长/μm 空间分辨率/m 1 VNIR 0.425 2 9 SWIR 1.21 7.5 2 0.48 2 10 1.57 7.5 3 0.545 2 11 1.66 7.5 4 0.605 2 12 1.73 7.5 5 0.66 2 13 2.165 7.5 6 0.725 2 14 2.205 7.5 7 0.825 2 15 2.26 7.5 8 0.91 2 16 2.33 7.5 表 2 WorldView-3数据VNIR主成分分析特征向量矩阵
Table 2. Eigenvector matrix of WorldView-3 VNIR data by PCA
Band1 Band2 Band3 Band4 Band5 Band6 Band7 Band8 PC1 -0.296 -0.278 -0.319 -0.354 -0.357 -0.39 -0.388 -0.421 PC2 -0.686 -0.452 -0.226 0.001 0.157 0.24 0.291 0.328 PC3 -0.437 0.288 0.437 -0.124 0.391 -0.247 0.284 -0.474 PC4 0.453 -0.275 -0.288 -0.415 0.157 -0.117 0.629 -0.175 PC5 0.052 -0.209 -0.149 0.46 0.023 0.513 0.008 -0.675 PC6 -0.196 0.646 -0.343 -0.232 -0.421 0.345 0.27 -0.047 PC7 -0.044 -0.169 0.292 0.394 -0.651 -0.307 0.458 0.003 PC8 -0.043 0.264 0.59 0.516 0.262 -0.489 0.07 0.035 表 3 WorldView-3数据SWIR主成分分析特征向量矩阵
Table 3. Eigenvector matrix of WorldView-3 SWIR data by PCA
Band1 Band2 Band3 Band4 Band5 Band6 Band7 Band8 PC1 0.382 0.311 0.359 0.418 0.356 0.348 0.32 0.321 PC2 -0.824 0.379 0.163 -0.083 0.354 0.085 -0.038 0.095 PC3 0.22 0.659 0.211 -0.213 -0.298 -0.501 -0.201 0.216 PC4 0.058 0.155 0.265 0.431 0.102 -0.037 -0.435 -0.718 PC5 -0.301 -0.295 0.203 0.641 -0.302 -0.424 0.071 0.307 PC6 -0.164 0.137 0.318 -0.08 -0.675 0.403 0.394 -0.27 PC7 0.007 -0.174 0.233 -0.049 -0.21 0.469 -0.704 0.391 PC8 0.065 -0.406 0.73 -0.409 0.239 -0.24 0.1 -0.073 -
[1] 白龙洋, 代晶晶, 王楠, 等. 基于GF-5卫星的西藏珠勒-芒拉地区矿物蚀变信息提取及找矿前景分析[J]. 中国地质, 2024, 51(3): 995-1007.
Bai L Y, Dai J J, Wang N, et al. Extraction of mineral alteration information and mineralization prospecting analysis based on GF-5 hyperspectral in Zhule-Mangla, Tibet[J]. Geology in China, 2024, 51(3): 995-1007.
[2] 王生礼, 李志军. 遥感蚀变信息提取研究综述[J]. 地质与资源, 2023, 32(4): 462-470. doi: 10.13686/j.cnki.dzyzy.2023.04.010
Wang S L, Li Z J. A review of remote sensing alteration information extraction techniques[J]. Geology and Resources, 2023, 32(4): 462-470. doi: 10.13686/j.cnki.dzyzy.2023.04.010
[3] 曹会, 张廷秀, 李雨柯, 等. 基于中、高分辨率遥感影像的羟基和铁染蚀变信息提取与成矿预测——以吉林市等六幅为例[J]. 地质与资源, 2021, 30(6): 710-715, 706. doi: 10.13686/j.cnki.dzyzy.2021.06.010
Cao H, Zhang T X, Li Y K, et al. Hydroxyl and iron-stained alteration information extraction and metallogenic prediction based on medium-high-resolution remote sensing images: A case study of six map sheets in Jilin City[J]. Geology and Resources, 2021, 30(6): 710-715, 706. doi: 10.13686/j.cnki.dzyzy.2021.06.010
[4] Sun Y Q, Tian S F, Di B G. Extracting mineral alteration information using WorldView-3 data[J]. Geoscience Frontiers, 2017, 8(5): 1051-1062. doi: 10.1016/j.gsf.2016.10.008
[5] 张元涛, 余长发, 潘蔚, 等. WorldView-3影像与ASTER热红外影像在内蒙古卫境地区铀矿勘查中的应用[J]. 铀矿地质, 2020, 36(5): 408-417.
Zhang Y T, Yu C F, Pan W, et al. Application of WorldView-3 and ASTER TIR for the exploration of uranium in Weijing, Inner Mongolia[J]. Uranium Geology, 2020, 36(5): 408-417.
[6] 周传芳, 陈卓, 孙彦峰, 等. 遥感在大兴安岭森林覆盖区地质矿产调查中的应用——以黑龙江洛古河1: 5万区域地质矿产调查工作为例[J]. 地质与资源, 2022, 31(5): 632-641, 613. doi: 10.13686/j.cnki.dzyzy.2022.05.007
Zhou C F, Chen Z, Sun Y F, et al. Remote sensing applied in geological and mineral survey in forest-covered area of Daxinganling Mountains: A case study of 1: 50000 regional geological and mineral survey in Luoguhe, Heilongjiang Province[J]. Geology and Resources, 2022, 31(5): 632-641, 613. doi: 10.13686/j.cnki.dzyzy.2022.05.007
[7] 段磊, 秦友平, 滕海清, 等. 若羌县昌运三峰山金矿地质特征[J]. 新疆有色金属, 2014, 37(1): 44-47.
Duan L, Qin Y P, Teng H Q, et al. Geological characteristics of the Sanfengshan gold deposit in Changyun, Ruoqiang County[J]. Xinjiang Nonferrous Metals, 2014, 37(1): 44-47. (in Chinese)
[8] 王啟宴, 李山, 范家盟, 等. 新疆若羌县三峰山铜矿区地质特征及矿床成因初探[J]. 山东国土资源, 2013, 29(7): 20-24, 30.
Wang Q Y, Li S, Fan J M, et al. Primary analysis on geological characteristics and origin of Sanfengshan copper deposit in Ruojiang County of Xinjiang Uygur Autonomous Region[J]. Shandong Land and Resources, 2013, 29(7): 20-24, 30.
[9] 赵月平. 新疆若羌县三峰山铜金矿床地质特征及成因分析[J]. 新疆有色金属, 2014, 37(S1): 70-73.
Zhao Y P. Geological characteristics and genetic analysis of the Sanfengshan copper gold deposit in Ruoqiang County, Xinjiang[J]. Xinjiang Nonferrous Metals, 2014, 37(S1): 70-73. (in Chinese)
[10] Shalimba E. Geology and geochemistry of the Sanqingshan Cu-Au deposit in Ruoqiang County, Xinjiang, China[D]. Beijing: China University of Geosciences, 2014.
[11] 徐卫东, 王兴保, 李生全, 等. 新疆若羌县大青山金矿构造控矿特征[J]. 地质与勘探, 2006, 42(1): 34-37.
Xu W D, Wang X B, Li S Q, et al. Daqingshan gold deposit in Ruoqiang County, Xinjiang[J]. Geology and Exploration, 2006, 42(1): 34-37.
[12] Wang T, Zhang H S, Lin H, et al. Textural-spectral feature-based species classification of mangroves in Mai Po Nature Reserve from WorldView-3 imagery[J]. Remote Sensing, 2016, 8(1): 24.
[13] 阿布都瓦斯提·吾拉木, 秦其明, 朱黎江. 基于6S模型的可见光、近红外遥感数据的大气校正[J]. 北京大学学报(自然科学版), 2004, 40(4): 611-618.
Ghulam A, Qin Q M, Zhu L J. 6S model based atmospheric correction of visible and near-infrared data and sensitivity analysis[J]. Acta Scientiarum Naturalium Universitatis Pekinensis, 2004, 40(4): 611-618.
[14] 张勇. 基于6S辐射传输模型的大气校正研究与应用[D]. 长沙: 中南大学, 2014.
Zhang Y. Investigation and application of atmospheric correction based on 6S radiative transfer model[D]. Changsha: Central South University, 2014.
[15] 周婷婷. 遥感影像辐射校正研究与应用[D]. 福州: 福建师范大学, 2010.
Zhou T T. Research and application of remote sensing radiometric correction[D]. Fuzhou: Fujian Normal University, 2010.
[16] Loughlin W P. Principal component analysis for alteration mapping[J]. Photogrammetric Engineering and Remote Sensing, 1991, 57(9): 1163-1169.
[17] Crósta A P, Moore J M. Enhancement of Landsat Thematic Mapper imagery for residual soil mapping in SW Minais Gerais State, Brazil: A prospecting case history in greenstone belt terrain[C]//Thematic Conference on Remote Sensing for Exploration Geology. Calgary: 1989: 1173-1187.
[18] 吴志春, 叶发旺, 郭福生, 等. 主成分分析技术在遥感蚀变信息提取中的应用研究综述[J]. 地球信息科学学报, 2018, 20(11): 1644-1656.
Wu Z C, Ye F W, Guo F S, et al. A review on application of techniques of principle component analysis on extracting alteration information of remote sensing[J]. Journal of Geo-Information Science, 2018, 20(11): 1644-1656.
[19] 王辉, 秦绪文, 范玉海, 等. 高分遥感技术在西昆仑大红柳滩-俘虏沟地区地质找矿中的应用[J]. 中国地质, 2018, 45(6): 1289-1301.
Wang H, Qin X W, Fan Y H, et al. The application of high resolution remote sensing technology to ore-prospecting in Dahongliutan-Fulugou area of West Kunlun Mountains[J]. Geology in China, 2018, 45(6): 1289-1301.
[20] Pour A B, Hashim M. Identification of hydrothermal alteration minerals for exploring of porphyry copper deposit using ASTER data, SE Iran[J]. Journal of Asian Earth Sciences, 2011, 42(6): 1309-1323.
-