Geochronology and geochemistry of Paleoproterozoic granodiorite in Liujiahe area, eastern Liaoning Province: Geological implication
-
摘要:
大量出露于辽东地区的花岗质岩体是探讨胶-辽-吉古元古代造山带构造演化历史的重要载体. 通过对辽东刘家河地区古元古代花岗闪长岩岩石学、年代学和地球化学进行研究, 确定其成因, 并进一步探讨胶-辽-吉古元古代造山带构造属性. 研究表明, 花岗闪长岩锆石U-Pb LA-ICP-MS测试207Pb/206Pb加权平均年龄为2 180.7±9.0 Ma, 形成时代为古元古代. SiO2含量为66.39%~71.65%, 平均值69.11%; Al2O3为11.35%~15.58%, 平均值12.67%; K2O+Na2O为7.22%~9.05%, 平均值7.89%; K2O/Na2O为0.53~0.59, 平均值0.55; CaO为0.65%~4.12%, 平均值2.44%, 含量较高; MgO为0.16%~0.86%, 平均值0.51%. 样品为钙碱性-高钾(钙碱性)系列, 其A/CNK和A/NK分别为0.63~1.10和1.06~1.20, 属于偏铝质-过铝质. 样品REE含量较低, 相对亏损Nb、Ta、Ti、Ba等高场强元素, 显示Ⅰ型花岗岩的特征. 地球化学特征表明花岗闪长岩是源于低压条件下长英质地壳部分熔融的I型花岗岩, 具有明显的岛弧岩浆特征. 在构造判别图解中所有样品落入火山弧花岗岩区域, 代表了辽吉造山带在古元古代早期(2.2~2.1 Ga)存在俯冲作用导致的弧岩浆活动.
Abstract:A large number of granitic rock mass exposed in eastern Liaoning Province serves as a critical medium for investigating the tectonic evolution history of Paleoproterozoic Jiao-Liao-Ji orogenic belt. Through the study of petrology, chronology, and geochemistry of the Paleoproterozoic granodiorites in Liujiahe area of eastern Liaoning Province, this paper determines the genesis and further explore the tectonic attributes of Paleoproterozoic Jiao-Liao-Ji orogenic belt. The study shows that the zircon U-Pb dating of granodiorite yields a weighted mean age of 2 180.7 ± 9.0 Ma, indicating its Paleoproterozoic formation. The SiO2 content is 66.39%-71.65%(averagely 69.11%), Al2O3 11.35%-15.58% (averagely 12.67%), K2O+Na2O 7.22%-9.05%(averagely 7.89%), K2O/Na2O 0.53-0.59(averagely 0.55), with high content of CaO (0.65%-4.12%, averagely 2.44%) and MgO (0.16%-0.86%, averagely 0.51%). The sample is of calc-alkaline to high-K (calc-alkaline) series, with A/CNK of 0.63-1.10 and A/NK of 1.06-1.20, belonging to metaluminous-peraluminous rocks, characterized by low REE content, and relatively depletion of HFSEs(Nb, Ta, Ti, Ba), showing the characteristics of I-type granites. The geochemical characteristics indicate that the granodiorite is originated from the partial melting of felsic crust under low-pressure conditions, with distinct island arc magmatic features. In the tectonic discrimination diagram, all samples plot within the volcanic arc granite field, indicating the subduction-induced arc magmatism in Liao-Ji orogeny during early Paleoproterozoic (2.2-2.1 Ga).
-
Key words:
- granodiorite /
- Paleoproterozoic /
- geochemistry /
- geochronology /
- arc-continent collision /
- Liaoning Province
-
-
图 6 花岗闪长岩稀土元素球粒陨石标准化配分图(标准化数值据文献[33])
Figure 6.
图 7 花岗闪长岩微量元素原始地幔标准化蛛网图(标准化数值据文献[34])
Figure 7.
图 8 刘家河地区花岗闪长岩构造环境判别图解(底图据文献[41])
Figure 8.
表 1 刘家河地区花岗闪长岩LA-ICP-MS锆石U-Pb定年数据
Table 1. LA-ICP-MS zircon U-Pb dating data of granodiorite in Liujiahe area
测点号 含量/10-6 Th/U 同位素比值 年龄/Ma 232Th 238U 207Pb/206Pb 1σ 207Pb/235U 1σ 206Pb/238U 1σ 207Pb/206Pb 1σ 207Pb/235U 1σ 206Pb/238U 1σ D378ZR1-1 110 225 0.49 0.1315 0.0018 7.1903 0.1109 0.3960 0.0040 2120 24 2135 14 2151 18 D378ZR1-2 345 616 0.56 0.1353 0.0016 7.7874 0.1009 0.4167 0.0037 2168 20 2207 12 2246 17 D378ZR1-3 299 853 0.35 0.1347 0.0015 7.5614 0.1046 0.4060 0.0040 2161 18 2180 12 2197 18 D378ZR1-4 109 196 0.55 0.1356 0.0017 7.6961 0.1159 0.4110 0.0044 2172 21 2196 14 2220 20 D378ZR1-5 211 386 0.55 0.1347 0.0015 7.6918 0.1225 0.4135 0.0053 2161 20 2196 14 2231 24 D378ZR1-6 247 475 0.52 0.1336 0.0015 7.6136 0.1115 0.4120 0.0044 2146 19 2186 13 2224 20 D378ZR1-7 127 228 0.56 0.1376 0.0017 7.7186 0.1311 0.4053 0.0049 2198 21 2199 15 2193 23 D378ZR1-8 253 777 0.32 0.1364 0.0014 7.7767 0.0950 0.4125 0.0039 2183 23 2206 11 2226 18 D378ZR1-9 288 551 0.52 0.1356 0.0017 7.6978 0.1051 0.4114 0.0048 2172 22 2196 12 2221 22 D378ZR1-10 287 520 0.55 0.1371 0.0016 7.8131 0.1312 0.4122 0.0059 2191 19 2210 15 2225 27 D378ZR1-11 101 359 0.28 0.1362 0.0019 7.7634 0.1677 0.4132 0.0087 2179 24 2204 19 2230 40 D378ZR1-12 163 267 0.61 0.1364 0.0021 7.7114 0.1242 0.4087 0.0038 2183 27 2198 14 2209 17 D378ZR1-13 177 271 0.65 0.1370 0.0018 7.7370 0.1023 0.4084 0.0036 2190 22 2201 12 2208 16 D378ZR1-14 94 183 0.52 0.1376 0.0019 7.7251 0.1282 0.4057 0.0040 2198 24 2200 15 2195 18 D378ZR1-15 118 252 0.47 0.1377 0.0019 7.7007 0.1424 0.4044 0.0062 2198 23 2197 17 2189 28 D378ZR1-16 256 463 0.55 0.1360 0.0016 7.7411 0.1178 0.4118 0.0050 2177 16 2201 14 2223 23 D378ZR1-17 103 225 0.46 0.1367 0.0018 7.7241 0.1260 0.4093 0.0054 2187 23 2199 15 2212 25 D378ZR1-18 209 321 0.65 0.1383 0.0016 7.6825 0.1116 0.4016 0.0042 2206 20 2195 13 2176 19 D378ZR1-19 130 229 0.57 0.1369 0.0018 7.5976 0.1135 0.4020 0.0046 2188 23 2185 13 2178 21 D378ZR1-20 314 723 0.43 0.1375 0.0015 7.6239 0.0993 0.4009 0.0035 2196 20 2188 12 2173 16 D378ZR1-21 457 1005 0.45 0.1367 0.0016 7.6085 0.1187 0.4029 0.0051 2185 21 2186 14 2182 23 D378ZR1-22 252 357 0.71 0.1362 0.0019 7.7116 0.1186 0.4094 0.0037 2179 24 2198 14 2212 17 表 2 刘家河地区花岗闪长岩主量和微量元素组成
Table 2. Contents of major and trace elements in granodiorite of Liujiahe area
样品编号 P10S1 P10S2 P10S3 P10S4 SiO2 71.65 68.76 69.62 66.39 Al2O3 12.20 11.35 11.55 15.58 Fe2O3 2.31 2.19 2.15 5.05 FeO 0.94 0.77 0.84 0.34 FeOT 3.25 2.96 2.99 5.39 CaO 1.42 4.12 3.58 0.65 MgO 0.86 0.16 0.21 0.79 K2O 2.74 2.51 2.62 3.37 Na2O 4.98 4.71 4.93 5.68 MnO 0.0060 0.0050 0.0040 0.0090 P2O5 0.041 0.039 0.037 0.057 TiO2 0.28 0.25 0.26 0.76 LOI 2.22 4.50 3.55 1.14 Zr 392.00 5.79 299.00 314.00 Ba 363.00 99.30 349.00 443.00 Hf 11.40 0.64 8.16 8.53 Ta 1.26 0.16 1.18 0.67 Th 6.92 0.62 44.10 10.20 U 0.69 0.55 1.43 0.40 Be 1.12 0.72 1.50 1.96 Cr 14.40 18.40 18.90 57.30 Co 1.84 1.60 2.04 5.07 Ni 3.10 2.54 2.55 17.70 Rb 50.50 11.50 44.00 64.30 Sr 33.50 14.50 42.10 138.00 Nb 13.40 2.32 14.10 6.18 Li 5.05 2.85 3.31 6.37 V 20.40 5.92 22.20 42.40 La 21.40 10.20 13.90 46.60 Ce 52.70 71.90 68.10 99.40 Pr 5.06 3.22 5.04 11.00 Nd 18.30 12.10 19.40 41.10 Sm 3.80 2.52 4.42 7.45 Eu 0.81 0.58 0.85 1.22 Gd 3.75 2.77 4.18 6.29 Tb 0.84 0.61 0.88 0.97 Dy 6.89 5.14 6.54 5.97 Ho 1.45 1.17 1.43 1.11 Er 4.32 3.86 4.33 3.23 Tm 0.76 0.65 0.70 0.56 Yb 4.75 4.18 4.51 3.20 Lu 0.61 0.62 0.64 0.41 Y 37.80 31.00 36.20 32.10 含量单位: 10-6(质量分数). -
[1] Zhao G C, Wilde S A, Cawood P A, et al. Archean blocks and their boundaries in the North China Craton: Lithological, geochemical, structural and P-T path constraints and tectonic evolution[J]. Precambrian Research, 2001, 107(1/2): 45-73.
[2] Zhao G C, Wilde S A, Cawood P A, et al. Tectonothermal history of the basement rocks in the western zone of the North China Craton and its tectonic implications[J]. Tectonophysics, 1999, 310(1/4): 37-53.
[3] Zhao G C, Wilde S A, Cawood P A, et al. Thermal evolution of Archean basement rocks from the eastern part of the North China craton and its bearing on tectonic setting[J]. International Geology Review, 1998, 40(8): 706-721. doi: 10.1080/00206819809465233
[4] 刘福来, 刘平华, 王舫, 等. 胶-辽-吉古元古代造山/活动带巨量变沉积岩系的研究进展[J]. 岩石学报, 2015, 31(10): 2816-2846.
Liu F L, Liu P H, Wang F, et al. Progresses and overviews of voluminous meta-sedimentary series within the Paleoproterozoic Jiao- Liao-Ji orogenic/mobile belt, North China Craton[J]. Acta Petrologica Sinica, 2015, 31(10): 2816-2846.
[5] Zhao G C, Cawood P A, Wilde S A, et al. Metamorphism of basement rocks in the central zone of the North China Craton: Implications for Paleoproterozoic tectonic evolution[J]. Precambrian Research, 2000, 103(1/2): 55-88.
[6] Wu F Y, Yang J H, Wilde S A, et al. Geochronology, petrogenesis and tectonic implications of Jurassic granites in the Liaodong Peninsula, NE China[J]. Chemical Geology, 2005, 221(1/2): 127-156.
[7] 张秋生, 李守义. 辽吉岩套——早元古宙的一种特殊优地槽相杂岩[J]. 长春地质学院学报, 1985, 28(1): 1-12.
Zhang Q S, Li S Y. The Liaojitite suite: A special eugeosyncline facies of the Early Proterozoic[J]. Journal of Changchun College of Geology, 1985, 28(1): 1-12.
[8] 贺高品, 叶慧文. 辽东-吉南地区早元古代两种类型变质作用及其构造意义[J]. 岩石学报, 1998, 14(2): 152-162.
He G P, Ye H W. Two types of Early Proterozoic metamorphism and its tectonic significance in eastern Liaoning and southern Jilin areas [J]. Acta Petrologica Sinica, 1998, 14(2): 152-162.
[9] 路孝平, 吴福元, 林景仟, 等. 辽东半岛南部早前寒武纪花岗质岩浆作用的年代学格架[J]. 地质科学, 2004, 39(1): 123-138.
Lu X P, Wu F Y, Lin J Q, et al. Geochronological successions of the Early Precambrian granitic magmatism in southern Liaodong Peninsula and its constraints on tectonic evolution of the North China Craton[J]. Chinese Journal of Geology, 2004, 39(1): 123-138.
[10] Li Z, Chen B, Wei C J. Is the Paleoproterozoic Jiao-Liao-Ji Belt(North China Craton) a rift?[J]. International Journal of Earth Sciences, 2017, 106(1): 355-375. doi: 10.1007/s00531-016-1323-2
[11] Faure M, Lin W, Monié P, et al. Palaeoproterozoic arc magmatism and collision in Liaodong Peninsula (North-East China)[J]. Terra Nova, 2004, 16(2): 75-80. doi: 10.1111/j.1365-3121.2004.00533.x
[12] 陈井胜, 邢德和, 刘淼, 等. 辽宁辽阳地区辽河群酸性火山岩锆石U-Pb年代学及其地质意义[J]. 岩石学报, 2017, 33(9): 2792- 2810.
Chen J S, Xing D H, Liu M, et al. Zircon U-Pb chronology and geological significance of felsic volcanic rocks in the Liaohe Group from the Liaoyang area, Liaoning Province[J]. Acta Petrologica Sinica, 2017, 33(9): 2792-2810.
[13] 陈井胜, 田德欣, 邢德和, 等. 辽宁宽甸地区辽河群里尔峪组基性火山岩锆石U-Pb年代学及其地质意义[J]. 地球科学, 2020, 45(9): 3282-3294.
Chen J S, Tian D X, Xing D H, et al. Zircon U-Pb geochronology and its geological significance of the basic volcanic rocks from the Li'eryu Formation, Liaohe Group in Kuandian area, Liaoning Province[J]. Earth Science, 2020, 45(9): 3282-3294.
[14] Lu X P, Wu F Y, Guo J H, et al. Zircon U-Pb geochronological constraints on the Paleoproterozoic crustal evolution of the eastern block in the North China Craton[J]. Precambrian Research, 2006, 146(3/4): 138-164.
[15] Li S Z, Zhao G C, Sun M, et al. Deformation history of the Paleoproterozoic Liaohe assemblage in the eastern block of the North China Craton[J]. Journal of Asian Earth Sciences, 2005, 24(5): 659-674. doi: 10.1016/j.jseaes.2003.11.008
[16] Li S Z, Zhao G C. SHRIMP U-Pb zircon geochronology of the Liaoji granitoids: Constraints on the evolution of the Paleoproterozoic Jiao- Liao-Ji Belt in the eastern block of the North China Craton[J]. Precambrian Research, 2007, 158(1/2): 1-16.
[17] Zhou X W, Zhao G C, Wei C J, et al. Metamorphic evolution and Th-U-Pb zircon and monazite geochronology of high-pressure pelitic granulites in the Jiaobei massif of the North China Craton[J]. American Journal of Science, 2008, 308: 328-350. doi: 10.2475/03.2008.06
[18] 张旗, 潘国强, 李承东, 等. 花岗岩构造环境问题: 关于花岗岩研究的思考之三[J]. 岩石学报, 2007, 23(11): 2683-2698.
Zhang Q, Pan G Q, Li C D, et al. Are discrimination diagrams always indicative of correct tectonic settings of granites? Some crucial questions on granite study (3)[J]. Acta Petrologica Sinica, 2007, 23(11): 2683-2698.
[19] 赵岩, 张朋, 毕中伟, 等. 辽东岫岩地区两类古元古代花岗岩年代学、地球化学及地质意义[J]. 地球科学, 2020, 45(11): 4072- 4090.
Zhao Y, Zhang P, Bi Z W, et al. Geochronology and geochemistry of two types of Paleoproterozoic granites and their geological implications in the Xiuyan area, Liaodong Peninsula[J]. Earth Science, 2020, 45(11): 4072-4090.
[20] 宋剑飞. 关于辽东青城子地区古元古代奥长花岗岩的新认识[J]. 吉林地质, 2018, 37(3): 16-25.
Song J F. A new understanding of Palaeoproterozoic trondhjemite in Qingchengzi area of Liaodong[J]. Jilin Geology, 2018, 37(3): 16- 25.
[21] 李超, 陈斌, 李壮, 等. 辽东岫岩-宽甸地区古元古代条痕状花岗岩的岩石地球化学特征及其构造意义[J]. 岩石学报, 2017, 33(3): 963-977.
Li C, Chen B, Li Z, et al. Petrologic and geochemical characteristics of Paleoproterozoic monzogranitic gneisses from Xiuyan-Kuandian area in Liaodong Peninsula and their tectonic implications[J]. Acta Petrologica Sinica, 2017, 33(3): 963-977.
[22] 万渝生, 宋彪, 刘敦一, 等. 鞍山东山风景区3.8~2.5 Ga古老岩带的同位素地质年代学和地球化学[J]. 地质学报, 2001, 75(3): 363-370.
Wan Y S, Song B, Liu D Y, et al. Geochronology and geochemistry of 3.8-2.5 Ga ancient rock belt in the Dongshan Scenic Park, Anshan area[J]. Acta Geologica Sinica, 2001, 75(3): 363-370.
[23] 万渝生, 宋彪, 杨淳, 等. 辽宁抚顺-清原地区太古宙岩石SHRIMP锆石U-Pb年代学及其地质意义[J]. 地质学报, 2005, 79(1): 78-87.
Wan Y S, Song B, Yang C, et al. Zircon SHRIMP U-Pb geochronology of Archaean rocks from the Fushun-Qingyuan area, Liaoning Province and its geological significance[J]. Acta Geologica Sinica, 2005, 79(1): 78-87.
[24] 吴福元, 李秋立, 杨正赫, 等. 朝鲜北部狼林地块构造归属与地壳形成时代[J]. 岩石学报, 2016, 32(10): 2933-2947.
Wu F Y, Li Q L, Yang Z H, et al. Crustal growth and evolution of the Rangnim Massif, northern Korean Peninsula[J]. Acta Petrologica Sinica, 2016, 32(10): 2933-2947
[25] 郝德峰, 李三忠, 赵国春, 等. 辽吉地区古元古代花岗岩成因及对构造演化的制约[J]. 岩石学报, 2004, 20(6): 1409-1416.
Hao D F, Li S Z, Zhao G C, et al. Origin and its constraint to tectonic evolution of Paleoproterozoic granitoids in the eastern Liaoning and Jilin Province, North China[J]. Acta Petrologica Sinica, 2004, 20(6): 1409-1416.
[26] 任云伟, 王惠初, 康健丽, 等. 辽宁营口虎皮峪地区古元古代岩浆事件及地质意义[J]. 地质学报, 2017, 91(11): 2456-2472.
Ren Y W, Wang H C, Kang J L, et al. Paleoproterozoic magmatic events in the Hupiyu area in Yingkou, Liaoning Province and their geological significance[J]. Acta Geologica Sinica, 2017, 91(11): 2456-2472.
[27] Wang X P, Peng P, Wang C, et al. Nature of three episodes of Paleoproterozoic magmatism (2180 Ma, 2115 Ma and 1890 Ma) in the Liaoji Belt, North China with implications for tectonic evolution [J]. Precambrian Research, 2017, 298: 252-267. doi: 10.1016/j.precamres.2017.06.003
[28] Li Z, Chen B, Yan X L. The Liaohe Group: An insight into the Paleoproterozoic tectonic evolution of the Jiao-Liao-Ji Belt, North China Craton[J]. Precambrian Research, 2019, 326: 174-195. doi: 10.1016/j.precamres.2018.01.009
[29] 陈木森, 董永胜, 王鹏森, 等. 辽东黄花甸地区古元古代变辉绿岩的特征及成因[J]. 世界地质, 2020, 39(2): 306-321.
Chen M S, Dong Y S, Wang P S, et al. Characteristics and genesis of Paleoproterozoic metamorphic diabase in Huanghuadian area, eastern Liaoning Province[J]. Global Geology, 2020, 39(2): 306- 321.
[30] 郑永飞, 徐峥, 赵子福, 等. 华北中生代镁铁质岩浆作用与克拉通减薄和破坏[J]. 中国科学: 地球科学, 2018, 48(4): 379-414.
Zheng Y F, Xu Z, Zhao Z F, et al. Mesozoic mafic magmatism in North China: Implications for thinning and destruction of cratonic lithosphere[J]. Science China Earth Sciences, 2018, 61(4): 353- 385.
[31] 刘俊来, 纪沫, 申亮, 等. 辽东半岛早白垩世伸展构造组合、形成时代及区域构造内涵[J]. 中国科学: 地球科学, 2011, 41(5): 618-637.
Liu J L, Ji M, Shen L, et al. Early Cretaceous extensional structures in the Liaodong Peninsula: Structural associations, geochronological constraints and regional tectonic implications[J]. Science China Earth Sciences, 2011, 54(6): 823-842.
[32] 侯可军, 李延河, 田有荣. LA-MC-ICP-MS锆石微区原位U-Pb定年技术[J]. 矿床地质, 2009, 28(4): 481-492.
Hou K J, Li Y H, Tian Y R. In situ U-Pb zircon dating using laser ablation-multi ion counting-ICP-MS[J]. Mineral Deposits, 2009, 28(4): 481-492.
[33] Boynton W V. Geochemistry of the rare earth elements: Meteorite studies[M]//Henderson P. Rare Earth Element Geochemistry. Amsterdam: Elsevier, 1984: 63-114.
[34] Sun S S, McDonough W F. Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes [J]. Geological Society, London, Special Publications, 1989, 42(1): 313-345.
[35] 杨进辉, 吴福元, 谢烈文, 等. 辽东矿洞沟正长岩成因及其构造意义: 锆石原位微区U-Pb年龄和Hf同位素制约[J]. 岩石学报, 2007, 23(2): 263-276.
Yang J H, Wu F Y, Xie L W, et al. Petrogenesis and tectonic implications of Kuangdonggou syenites in the Liaodong Peninsula, East North China Croton: Constraints from in-situ zircon U-Pb ages and Hf isotopes[J]. Acta Petrologica Sinica, 2007, 23(2): 263- 276.
[36] King P L, White A J R, Chappell B W, et al. Characterization and origin of aluminous A-type granites from the Lachlan Fold Belt, Southeastern Australia[J]. Journal of Petrology, 1997, 38(3): 371- 391.
[37] 宋运红, 杨凤超, 闫国磊, 等. 辽东地区古元古代花岗岩SHRIMP U-Pb年龄、Hf同位素组成及构造意义[J]. 地质学报, 2016, 90(10): 2620-2636.
Song Y H, Yang F C, Yan G L, et al. SHRIMP U-Pb ages and Hf isotopic compositions of Paleoproterozoic granites from the eastern part of Liaoning Province and their tectonic significance[J]. Acta Geologica Sinica, 2016, 90(10): 2620-2636.
[38] 顾玉超, 鞠楠, 陈仁义, 等. 辽东兰花岭地区古元古代I型花岗岩类与辽吉A型花岗岩对比研究[J]. 地质通报, 2024, 43(2/3): 317-339.
Gu Y C, Ju N, Chen R Y, et al. Comparative study of the Lanhualing Paleoproterozoic I-type granitoids and the Liaoji A-type granitoids in eastern Liaoning[J]. Geological Bulletin of China, 2024, 43(2/3): 317-339.
[39] 杨明春, 陈斌, 闫聪. 华北克拉通胶-辽-吉带古元古代条痕状花岗岩成因及其构造意义[J]. 地球科学与环境学报, 2015, 37(5): 31-51.
Yang M C, Chen B, Yan C. Petrogenesis of Paleoproterozoic gneissic granites from Jiao-Liao-Ji Belt of North China Craton and their tectonic implications[J]. Journal of Earth Sciences and Environment, 2015, 37(5): 31-51.
[40] 毕君辉, 邢德和, 葛文春, 等. 辽东地区北辽河群变酸性火山岩形成的时代及构造背景: 古元古代陆内裂谷, 还是活动大陆边缘? [J]. 地学前缘, 2018, 25(3): 295-308.
Bi J H, Xing D H, Ge W C, et al. Age and tectonic setting of meta- acid volcanic rocks from the North Liaohe Group in the Liaodong area: Paleoproterozoic intracontinental rift or active continental margin?[J]. Earth Science Frontiers, 2018, 25(3): 295-308.
[41] Cawood P A, Hawkesworth C J, Dhuime B. Detrital zircon record and tectonic setting[J]. Geology, 2012, 40(10): 875-878.
-