Geochemistry of uranium-bearing sandstones of Yaojia Formation and Sifangtai Formation in the western slope of Songliao Basin
-
摘要:
对松辽盆地西部斜坡区姚家组和四方台组含铀地层沉积环境、构造背景、物源及其与成矿关系开展研究, 对6个代表性钻孔中的30个样品进行主量元素、微量元素和稀土元素进行分析测试. 结果表明, 赋矿碎屑岩以长石岩屑砂岩为主, 具有SiO2含量变化较大(38.94%~83.32%, 平均为73.07%)、富碱(Na2O+K2O 4.47%~6.78%)、铝含量较高(Al2O3 8.15%~13.55%, 平均为11.46%)、镁钙含量相对较高(MgO 0.18%~7.38%, 平均为0.88%; CaO 0.17%~12.63%, 平均为1.96%)的特征. 稀土总量较低(ΣREE 70.08×10-6~211.33×10-6)、轻稀土分馏系数(La/Sm)N=2.32~3.96, 重稀土分馏系数(Gd/Yb)N=1.54~3.25, Eu为中等负异常(δEu=0.60~0.90), 壳源岩浆特征明显. 砂岩的ICV值(0.54~2.30, 平均值为0.84)和CIA值(41.08~68.96, 平均值为61.77)反映出源区干旱-半干旱气候条件下的中等化学风化作用. 源岩属性判别图解表明源岩以长英质岩石为主, 并且含少量古老沉积物质. 主量元素和微量元素的构造背景判别图解综合表明姚家组、四方台组砂岩物源区为主动大陆边缘的构造环境, 物源为大兴安岭地区发育的酸性火成岩-沉积岩系.
Abstract:The paper comprehensively studies the sedimentary environment, tectonic setting, provenance, and their relationship with uranium mineralization in the uranium-bearing strata of Yaojia Formation and Sifangtai Formation in the western slope of Songliao Basin, and analyzes the major, trace, and rare earth elements (REEs) in 30 samples from six representative boreholes. The results show that the ore-hosting clastic rocks are predominantly feldspar lithic sandstone, characterized by various SiO2 contents, rich alkali, and high contents of Al, Mg and Ca, with low ΣREE (70.08×10-6-211.33×10-6), LREE fractionation factor(La/Sm)N of 2.32-3.96, HREE fractionation factor(Gd/Yb)N of 1.54-3.25, and moderately negative Eu anomaly. The index of compositional variability (ICV) (0.54-2.30, averagely 0.84) and chemical index of alteration (CIA) values (41.08-68.96, averagely 61.77) of the sandstone reflect moderate chemical weathering in the source area under arid to semi-arid climatic conditions. The discrimination diagrams of source rock indicate that the provenance is dominated by felsic rocks, with minor contributions from ancient sedimentary materials. The discrimination diagrams of major and trace elements suggest that the sandstones of Yaojia and Sifangtai formations are derived from the active continental margin tectonic setting, with provenance primarily from the acidic igneous-sedimentary rock series developed in Daxinganling Mountains.
-
Key words:
- uranium deposit /
- geochemistry /
- Yaojia Formation /
- Sifangtai Formation /
- western slope /
- Songliao Basin
-
-
图 4 研究区姚家组、四方台组砂岩稀土元素配分模式图和微量元素蛛网图(据文献[14])
Figure 4.
图 5 姚家组和四方台组砂岩三角判别图解(据文献[9])
Figure 5.
图 6 松辽盆地西部斜坡区姚家组和四方台组砂岩微量元素构造环境判别图解(据文献[9])
Figure 6.
图 7 松辽盆地西部斜坡区姚家组和四方台组砂岩主量元素判别图解(据文献[15])
Figure 7.
图 10 松辽盆地西部斜坡区姚家组和四方台组砂岩Th/Sc-Zr/Sc图解(据文献[21])
Figure 10.
图 11 松辽盆地西部斜坡区姚家组、四方台组砂岩物源区特征判别图(据文献[22])
Figure 11.
图 12 松辽盆地西部斜坡区姚家组和四方台组砂岩CIA-ICV图解和ICV-CIA图解(据文献[23])
Figure 12.
图 13 松辽盆地西部斜坡区姚家组和四方台组砂岩古气候判别图解(据文献[23])
Figure 13.
-
[1] 张金带. 中国铀资源的潜力与前景[J]. 中国核工业, 2008(2): 18-21.
Zhang J D. Potential and evaluation of uranium resources in China[J]. China Nuclear Industry, 2008(2): 18-21.
[2] 陈祖伊, 陈戴生, 古抗衡, 等. 中国砂岩型铀矿容矿层位、矿化类型和矿化年龄的区域分布规律[J]. 铀矿地质, 2010, 26(6): 321-330.
Chen Z Y, Chen D S, Gu K H, et al. The regional distribution regularities of ore-hosting horizon, deposit type and mineralization age of China's sandstone-hosted uranium deposits[J]. Uranium Geology, 2010, 26(6): 321-330.
[3] 聂逢君, 李满根, 严兆彬, 等. 内蒙古二连盆地砂岩型铀矿目的层赛汉组分段与铀矿化[J]. 地质通报, 2015, 34(10): 1952-1963.
Nie F J, Li M G, Yan Z B, et al. Segmentation of the target layer Saihan Formation and sandstone-type uranium mineralization in Erlian Basin[J]. Geological Bulletin of China, 2015, 34(10): 1952-1963.
[4] 汤超, 魏佳林, 肖鹏, 等. 松辽盆地北部砂岩型铀矿铀的赋存状态研究[J]. 矿产与地质, 2017, 31(6): 1009-1016.
Tang C, Wei J L, Xiao P, et al. Research on uranium occurrence state of sandstone-type uranium deposit in the northern Songliao Basin[J]. Mineral Resources and Geology, 2017, 31(6): 1009-1016.
[5] 吴柏林, 张婉莹, 宋子升, 等. 鄂尔多斯盆地北部砂岩型铀矿铀矿物地质地球化学特征及其成因意义[J]. 地质学报, 2016, 90(12): 3393-3407. doi: 10.3969/j.issn.0001-5717.2016.12.009
Wu B L, Zhang W Y, Song Z S, et al. Geological and geochemical characteristics of uranium minerals in the sandstone-type uranium deposits in the north of Ordos Basin and their genetic significance[J]. Acta Geologica Sinica, 2016, 90(12): 3393-3407. doi: 10.3969/j.issn.0001-5717.2016.12.009
[6] 张天福, 孙立新, 张云, 等. 鄂尔多斯盆地北缘侏罗纪延安组、直罗组泥岩微量、稀土元素地球化学特征及其古沉积环境意义[J]. 地质学报, 2016, 90(12): 3454-3472.
Zhang T F, Sun L X, Zhang Y, et al. Geochemical characteristics of the Jurassic Yan'an and Zhiluo Formations in the northern margin of Ordos Basin and their paleoenvironmental implications[J]. Acta Geologica Sinica, 2016, 90(12): 3454-3472.
[7] 鲁超, 彭云彪, 刘鑫扬, 等. 二连盆地马尼特坳陷西部砂岩型铀矿成矿的沉积学背景[J]. 铀矿地质, 2013, 29(6): 336-343.
Lu C, Peng Y B, Liu X Y, et al. Sedimentary backgrounds of sandstone- type uranium deposits in western manite depression of Erlian Basin[J]. Uranium Geology, 2013, 29(6): 336-343.
[8] 徐增连, 张博, 里宏亮, 等. 松辽盆地开鲁坳陷钱家店地区姚家组砂岩地球化学特征及物源和构造背景分析[J]. 矿物岩石地球化学通报, 2019, 38(3): 572-586.
Xu Z L, Zhang B, Li H L, et al. Geochemistry of the Yaojia Formation sandstone in the Kailu depression, Songliao Basin: Implications for its provenance and tectonic setting[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2019, 38(3): 572-586.
[9] 夏飞勇, 焦养泉, 荣辉, 等. 松辽盆地南部钱家店铀矿床姚家组砂岩地球化学特征及地质意义[J]. 地球科学, 2019, 44(12): 4235-4251.
Xia F Y, Jiao Y Q, Rong H, et al. Geochemical characteristics and geological implications of sandstones from the Yaojia Formation in Qianjiadian uranium deposit, southern Songliao Basin[J]. Earth Science, 2019, 44(12): 4235-4251.
[10] 殷敬红, 张辉, 昝国军, 等. 内蒙古东部开鲁盆地钱家店凹陷铀矿成藏沉积因素分析[J]. 古地理学报, 2000, 2(4): 76-83.
Yin J H, Zhang H, Zan G J, et al. Sedimentation factors analysis of uranium mineralization of Qianjiadian depression, Kailu basin, East Inner Mongolia Autonomous Region[J]. Journal of Palaeogeography, 2000, 2(4): 76-83.
[11] 侯晓光, 罗敏, 卢胜军, 等. 松辽盆地北部依安凹陷四方台组砂体特征及铀成矿潜力分析[J]. 地质与资源, 2021, 30(6): 675-682. doi: 10.13686/j.cnki.dzyzy.2021.06.005
Hou X G, Luo M, Lu S J, et al. Characteristics of sand body and uranium motallo genic potential in Sifangtai Formation of Yi'an sag, northern Songliao Basin[J]. Geology and Resources, 2021, 30(6): 675-682. doi: 10.13686/j.cnki.dzyzy.2021.06.005
[12] 刘晓辉, 罗敏. 松辽盆地泰康地区四方台组铀成矿条件分析[J]. 地质与资源, 2021, 30(1): 14-20. doi: 10.13686/j.cnki.dzyzy.2021.01.002
Liu X H, Luo M. Analysis on the uranium metallogenic conditions of Sifangtai Formation in Taikang area, Songliao Basin[J]. Geology and Resources, 2021, 30(1): 14-20. doi: 10.13686/j.cnki.dzyzy.2021.01.002
[13] 代问义, 李研, 赵忠华, 等. 松辽盆地东北缘白垩系砂岩型铀矿成矿条件与找矿方向[J]. 地质与资源, 2019, 28(6): 519-525. http://www.dzyzy.cn/article/id/9527
Dai W Y, Li Y, Zhao Z H, et al. Minerogenetic conditions and prospecting direction of the Cretaceous sandstone uranium deposit in Northeast Songliao Basin[J]. Geology and Resources, 2019, 28(6): 519-525. http://www.dzyzy.cn/article/id/9527
[14] Sun S S, McDonough W F. Chemical and isotopic systematics of oceanic basalts: Implication for mantle composition and processes[J]. Geological Society Special Publication, 1989, 42(1): 313-345.
[15] Roser B P, Korsch R J. Provenance signatures of sandstone-mudstone suites determined using discriminant function analysis of major-element data[J]. Chemical Geology, 1988, 67(1/2): 119-139, doi: 10.1016/0009-2541(88)90010-1.
[16] Schieber J. A combined petrographical-geochemical provenance study of the Newland Formation, Mid-Proterozoic of Montana[J]. Geological Magazine, 1992, 129(2): 223-237.
[17] Hayashi K I, Fujisawa H, Holland H D, et al. Geochemistry of~1.9 Ga sedimentary rocks from northeastern Labrador, Canada[J]. Geochimica et Cosmochimica Acta, 1997, 61(19): 4115-4137.
[18] Floyd P A, Leveridge B E. Tectonic environment of the Devonian Gramscatho Basin, South Cornwall: Framework mode and geochemical evidence from turbiditic sandstones[J]. Journal of the Geological Society, 1987, 144(4): 531-542.
[19] Bhatia M R, Crook K A W. Trace element characteristics of graywackes and tectonic setting discrimination of sedimentary basins[J]. Contributions to Mineralogy and Petrology, 1986, 92(2): 181-193.
[20] Cullers R L, Podkovyrov V N. Geochemistry of the Mesoproterozoic Lakhanda shales in southeastern Yakutia, Russia: Implications for mineralogical and provenance control, and recycling[J]. Precambrian Research, 2000, 104(1/2): 77-93.
[21] McLennan S M, Hemming S, McDaniel D K, et al. Geochemical approaches to sedimentation, provenance, and tectonics[M]//Johnsson M J, Basu A. Processes Controlling the Composition of Clastic Sediments. Boulder: Geological Society of America, 1993: 21-40.
[22] McLennan S M, Taylor S R. Sedimentary rocks and crustal evolution: Tectonic setting and secular trends[J]. The Journal of Geology, 1991, 99(1): 1-21.
[23] Cox R, Lowe D R, Cullers R L. The influence of sediment recycling and basement composition on evolution of mudrock chemistry in the southwestern United States[J]. . Geochimica et Cosmo-chimica Acta, 1995, 59(14): 2919-2940
-