Extraction of remote sensing mineralization alteration information and delineation of prospecting potential areas based on Crosta technique: A case study of Yichun area in Xiaoxinganling Mountains
-
摘要:
以Landsat8 OLI遥感数据为基础数据源,以ASTER和ALOS数据为解译底图,采用目视解译的方法,对小兴安岭伊春地区地层、线性构造、环形构造进行解译. 以蚀变围岩的“诊断光谱”为理论依据,结合波段比值和主成分分析法提取羟基和铁染蚀变信息,并结合密度分割对主分量划分蚀变等级. 对照遥感解译的断裂构造、环形构造和蚀变矿化信息进行综合分析,从遥感角度圈定成矿有利部位,以供野外找矿参考.
Abstract:Based on the Landsat8 OLI remote sensing data, with ASTER and ALOS data as the interpretation base maps, this study interprets the strata, and linear and ring structures in Yichun area, Xiaoxinganling Mountains, by visual interpretation. Guided by the theory of diagnostic spectra for altered wall rocks, the hydroxyl alteration and ferric contamination anomaly information are extracted with band ratio and principal component analysis(PCA). The alterations in principal components are graded by density slicing. Through comprehensive analysis of remote sensing interpreted faults, ring structures and alteration-mineralization information, potential mineralization areas are delineated from the perspective of remote sensing to provide references for field prospecting.
-
-
表 1 铁蚀变和羟基蚀变的波谱依据
Table 1. Spectral basis of iron alteration and hydroxyl alteration
离子或基团 特征波谱波长位置 对应OLI波段 异常提取依据 典型矿物 反射峰/μm 吸收谷/μm Fe3+ 0.65~0.75,1.50~1.70 0.48~0.50,0.86 Band2、4、5、6 利用Band2、5的吸收特征和Band4、6的反射特征 磁铁矿、赤铁矿、褐铁矿、黄钾铁矾 OH- 0.5,1.55~1.60 0.86,2.10~2.30 Band2、5、6、7 利用Band2、6的反射特征和Band5、7的吸收特征 高岭石、绿泥石、黑云母、角闪石、绿帘石 表 2 Band 2、5、6、7主成分分析特征向量矩阵
Table 2. Eigenvector matrix of Bands 2, 5, 6 and 7 based on principal component analysis
特征向量 Band2 Band5 Band6 Band7 PC1 -0.471045 -0.815558 -0.328754 -0.070023 PC2 -0.694435 0.577303 -0.409652 -0.129094 PC3 0.543477 0.031790 -0.818103 -0.185283 PC4 -0.022575 0.023989 -0.234122 0.971649 表 3 Band 2、4、5、6/5主成分分析特征向量矩阵
Table 3. Eigenvector matrix of Bands 2, 4, 5 and 6/5 based on principal component analysis
特征向量 Band2 Band4 Band5 Band6/5 PC1 -0.415745 -0.651497 -0.634592 -0.000244 PC2 -0.417582 -0.483116 0.769560 -0.000940 PC3 -0.807948 0.584933 -0.071200 0.001729 PC4 0.000903 -0.001624 0.000691 0.999998 -
[1] 曹会, 张廷秀, 李雨柯, 等. 基于中、高分辨率遥感影像的羟基和铁染蚀变信息提取与成矿预测——以吉林市等六幅为例[J]. 地质与资源, 2021, 30(6): 710-715, 706. doi: 10.13686/j.cnki.dzyzy.2021.06.010
Cao H, Zhang T X, Li Y K, et al. Hydroxyl and iron-stained alteration information extraction and metallogenic prediction based on medium-high-resolution remote sensing images: A case study of six map sheets in Jilin City[J]. Geology and Resources, 2021, 30(6): 710-715, 706. doi: 10.13686/j.cnki.dzyzy.2021.06.010
[2] 冯新义, 吕成哲, 逯跃锋, 等. 基于Landsat 8 OLI数据内蒙古石哈河地区蚀变信息提取[J]. 内蒙古科技与经济, 2023(6): 73-77.
Feng X Y, Lv C Z, Lu Y F, et al. Alteration information extraction in Shihahe area of Inner Mongolia based on Landsat 8 OLI data[J]. Inner Mongolia Science Technology & Economy, 2023(6): 73-77. (in Chinese)
[3] 贺金鑫, 姜天, 董永胜, 等. 基于Landsat 8的辽宁弓长岭区遥感蚀变信息提取[J]. 吉林大学学报(地球科学版), 2019, 49(3): 894-902.
He J X, Jiang T, Dong Y S, et al. Alteration information extraction based on remote sensing of Landsat 8 in Gongchangling area of Liaoning[J]. Journal of Jilin University (Earth Science Edition), 2019, 49(3): 894-902.
[4] 崔静月, 董玉森, 岳文丽, 等. 基于遥感蚀变信息提取巴林格撞击坑周边铁陨石[J]. 地质科技通报, 2021, 40(1): 209-216.
Cui J Y, Dong Y S, Yue W L, et al. Extraction of iron meteorites from the Barringer Meteor Crater based on remote sensing alteration information [J]. Bulletin of Geological Science and Technology, 2021, 40(1): 209-216.
[5] 高峰, 王云鹏, 胡歆怡. 基于Crosta方法的珠江口总悬浮物遥感异常信息提取研究[J]. 绿色科技, 2018(6): 1-4, 8.
Gao F, Wang Y P, Hu X Y. Study on remote sensing abnormal information extraction of total suspended matter in the Pearl River estuary based on Crosta method[J]. Journal of Green Science and Technology, 2018(6): 1-4, 8.
[6] 王守志, 邢立新, 杨爱霞, 等. Landsat8数据与GF-1数据提取铁染蚀变信息的对比分析[J]. 安徽农业科学, 2016, 44(9): 284-287.
Wang S Z, Xing L X, Yang A X, et al. Comparative analysis of iron stained alteration information extracted by Landsat8 data and GF-1 data [J]. Journal of Anhui Agricultural Sciences, 2016, 44(9): 284-287.
[7] 王生礼, 李志军. 遥感蚀变信息提取研究综述[J]. 地质与资源, 2023, 32(4): 462-470. doi: 10.13686/j.cnki.dzyzy.2023.04.010
Wang S L, Li Z J. A review of remote sensing alteration information extraction techniques[J]. Geology and Resources, 2023, 32(4): 462-470. doi: 10.13686/j.cnki.dzyzy.2023.04.010
[8] 吴明刚, 王能伟. 基于Landsat8 OLI数据的遥感蚀变信息提取与成矿远景区圈定——以青海乌兰哈莉哈德山地区为例[J]. 矿产与地质, 2023, 37(1): 197-202.
Wu M G, Wang N W. Remote sensing alteration information extraction and metallogenic prospect area delineation based on Landsat8 OLI data: A case study of Halehad Mountain area in Wulan County, Qinghai[J]. Mineral Resources and Geology, 2023, 37(1): 197-202.
[9] 王烜, 雷广新, 江洋. 基于主成分分析法对遥感蚀变异常提取——以内蒙古伊和诺尔地区1∶5万矿调为例[J]. 地质与资源, 2014, 23 (S1): 122-128.
Wang X, Lei G X, Jiang Y. Extraction of alteration anomalies from remote sensing data based on principal component analysis: A case study of the 1∶50 000 mineral geological survey in Yihenuoer area, Inner Mongolia[J]. Geology and Resources, 2014, 23(S1): 122-128.
[10] 江山, 张渝金, 汪岩, 等. 基于Landsat8 OLI数据的遥感蚀变异常提取应用研究——以内蒙古阿鲁科尔沁旗地区为例[J]. 地质与资源, 2018, 27(1): 93-98. http://www.dzyzy.cn/article/id/8440
Jiang S, Zhang Y J, Wang Y, et al. Application of alteration anomaly extraction by remote sensing based on Landsat 8 OLI data: A case study of Ar Horqin Qi, Inner Mongolia[J]. Geology and Resources, 2018, 27 (1): 93-98. http://www.dzyzy.cn/article/id/8440
[11] 冯雨林, 时建民, 杨利军. ETM+遥感影像矿化蚀变信息的提取与找矿实践[J]. 地质与资源, 2008, 17(1): 69-72. doi: 10.13686/j.cnki.dzyzy.2008.01.006
Feng Y L, Shi J M, Yang L J. Extraction of the mineralization and alteration information from ETM+ remote sensing image: The practice in exploration[J]. Geology and Resources, 2008, 17(1): 69-72. doi: 10.13686/j.cnki.dzyzy.2008.01.006
[12] 王守志, 邢立新, 仲波, 等. 基于Landsat-8 OLI和GF-1 PMS数据融合的铁染蚀变信息提取[J]. 遥感技术与应用, 2016, 31(5): 950-957.
Wang S Z, Xing L X, Zhong B, et al. Extraction of iron stained alteration information based on Landsat-8 OLI and GF-1 PMS data[J]. Remote Sensing Technology and Application, 2016, 31(5): 950-957.
[13] 白杨林, 吕凤军, 苏鸿博, 等. 高光谱遥感蚀变矿物信息提取研究综述[J]. 遥感信息, 2023, 38(1): 1-10.
Bai Y L, Lv F J, Su H B, et al. Review of hyperspectral remote sensing altered mineral information extraction[J]. Remote Sensing Information, 2023, 38(1): 1-10.
[14] 吴志春, 叶发旺, 郭福生, 等. 主成分分析技术在遥感蚀变信息提取中的应用研究综述[J]. 地球信息科学学报, 2018, 20(11): 1644-1656.
Wu Z C, Ye F W, Guo F S, et al. A review on application of techniques of principle component analysis on extracting alteration information of remote sensing[J]. Journal of Geo-information Science, 2018, 20(11): 1644-1656.
[15] 荆凤, 陈建平. 矿化蚀变信息的遥感提取方法综述[J]. 遥感信息, 2005(2): 62-65, 57.
Jing F, Chen J P. The review of the alteration information extraction with remote sensing[J]. Remote Sensing Information, 2005(2): 62-65, 57.
[16] 梁昊, 李程, 李佳奇. 基于Landsat 8遥感影像的矿化信息提取——以内蒙古额济纳为例[J]. 南方国土资源, 2016(11): 30-32, 36.
Liang H, Li C, Li J Q. Extraction of mineralization information based on Landsat 8 remote sensing images[J]. Southern Land and Resources, 2016(11): 30-32, 36. (in Chinese)
[17] 彭光雄, 王明艳, 何皎. 基于局部可变窗口的Crosta蚀变信息提取技术——以莫海拉亨为例[J]. 大地构造与成矿学, 2013, 37(3): 553-560.
Peng G X, Wang M Y, He J. An improved Crosta technique based on local variable window for alteration information extraction: A case study of the Mohailaheng area[J]. Geotectonica et Metallogenia, 2013, 37 (3): 553-560.
[18] 曹会, 李青, 李雨柯, 等. 黑龙江省嫩江地区遥感蚀变信息提取与找矿预测[J]. 吉林地质, 2021, 40(4): 48-56.
Cao H, Li Q, Li Y K, et al. Remote sensing alteration information extraction and prospecting prediction of the Nenjiang area in Heilongjiang Province[J]. Jilin Geology, 2021, 40(4): 48-56.
[19] 汪子义, 张廷斌, 易桂花, 等. Landsat8 OLI数据斑岩铜矿遥感蚀变矿物组合提取研究[J]. 国土资源遥感, 2018, 30(3): 89-95.
Wang Z Y, Zhang T B, Yi G H, et al. Extraction of hydrothermal alteration mineral groups of porphyry copper deposits using Landsat8 OLI data[J]. Remote Sensing for Land & Resources, 2018, 30(3): 89-95.
-