-
摘要:
硫酸熟化过程是硫酸法处理锂云母精矿的关键,关系到锂、铷、铯的综合利用。采用L16(45)正交试验研究了锂云母精矿的硫酸熟化过程。结果表明,影响锂云母硫酸熟化的因素主次顺序是:酸矿比>硫酸浓度>熟化时间>熟化温度>给料粒度。硫酸熟化的最优条件为:酸矿比1 GA6FA 1、硫酸质量浓度80%、熟化时间4 h、熟化温度150℃、给料粒度74 μm以下占80%,在此条件下锂、铷、铯的浸出率分别为97.58%、96.73%和97.39%,有助于锂云母中锂、铷、铯的综合回收。
Abstract:The sulfuric acid curing process of the sulfuric acid method treating lepidolite concentrate, which is the key factor on comprehensive utilization of lithium, rubidium and cesium, was investigated by using L16(45) orthogonal experimental design. The results showed that the importance of the factors affecting the sulfuric acid curing of lepidolite was:acid-solid ratio > sulfuric acid concentration > curing duration > curing temperature > particle size. The optimum curing parameters were determined as follows:acid-solid ratio of 1 GA6FA 1, sulfuric acid concentration of 80%, curing duration of 4 hours, curing temperature of 150℃, particle size of 80% below 74 μm. Under the optimal conditions, the leaching efficiencies of lithium, rubidium and cesium were 97.58%, 96.73% and 97.39%, respectively. The study can provide reference for sulfuric acid method of treating the lepidolite ore, which lays the foundation for the comprehensive utilization of lithium, rubidium and cesium in the lepidolite ore.
-
Key words:
- lepidolite /
- sulfuric acid curing /
- leaching /
- orthogonal experiment /
- rubidium /
- cesium
-
-
表 1 锂云母精矿主要化学成分 /%
Table 1. Main chemical compositions of the lepidolite concentrate
组分 Li2O Rb2O Cs2O K2O Al2O3 SiO2 Na2O F 含量 3.24 1.02 0.22 6.25 20.71 60.63 2.49 5.10 表 2 硫酸熟化过程的正交试验表
Table 2. Factors and levels of the orthogonal experiments
水平 因素 A 因素 B 因素 C 因素 D 因素 E 粒度/(-74 μm, %) 硫酸浓度/% 熟化温度/℃ 酸矿比/(mL·g-1) 熟化时间/h 1 50 50 120 0.5:1 1 2 60 60 150 0.6:1 2 3 80 70 180 0.8:1 3 4 100 80 200 1:1 4 表 3 正交试验结果及其直观分析
Table 3. Results of the orthogonal experiments
编号 粒度/(-74 μm, %) 硫酸浓度/% 熟化温度/℃ 酸矿比/(mL·g-1) 熟化时间/h Li浸出率/% Rb浸出率/% Cs浸出率/% 熟化程度/% 1 50 50 200 0.8:1 2 63.50 65.48 58.60 62.53 2 60 50 120 0.5:1 3 45.11 47.52 52.36 48.33 3 80 50 180 1:1 1 75.34 75.31 67.04 72.56 4 100 50 150 0.6:1 4 56.47 57.04 62.23 58.58 5 50 60 180 0.6:1 3 59.50 61.00 60.61 60.37 6 60 60 150 1:1 2 86.39 84.68 82.30 84.46 7 80 60 200 0.5:1 4 59.28 63.27 61.65 61.40 8 100 60 120 0.8:1 1 66.95 69.53 63.94 66.81 9 50 70 120 1:1 4 87.18 86.25 84.95 86.13 10 60 70 200 0.6:1 1 72.05 72.58 64.54 69.72 11 80 70 150 0.8:1 3 94.37 93.04 91.73 93.05 12 100 70 180 0.5:1 2 70.89 70.01 62.70 67.87 13 50 80 150 0.5:1 1 65.35 65.23 60.48 63.69 14 60 80 180 0.8:1 4 97.10 96.00 95.05 96.05 15 80 80 120 0.6:1 2 73.47 74.33 67.11 71.64 16 100 80 200 1:1 3 98.64 96.87 97.21 97.57 K1 272.72 242.00 272.91 241.29 272.78 K2 298.56 273.04 299.78 260.31 286.50 K3 298.65 316.77 296.85 318.44 299.32 K4 290.83 328.95 291.22 340.72 302.16 L1 68.18 60.50 68.23 60.32 68.20 L2 74.64 68.26 74.95 65.08 71.63 L3 74.66 79.19 74.21 79.61 74.83 L4 72.71 82.24 72.81 85.18 75.54 R 6.48 21.74 6.72 24.86 7.34 注:K1、K2、K3、K4为各因素对应水平1, 2, 3和4各试验点的熟化程度的总和; L1、L2、L3和L4为各因素对应水平1, 2, 3和4各试验点的熟化程度的平均值; R为各列的L1、L2、L3和L4中最大值与最小值的差值(极差)。 表 4 综合条件试验结果
Table 4. Results of the comprehensive tests
试验号 Li浸出率/% Rb浸出率/% Cs浸出率/% 熟化程度/% YZ-1 99.11 98.76 98.82 98.90 YZ-2 96.14 96.08 95.88 96.03 YZ-3 97.49 95.36 97.47 96.77 平均值 97.58 96.73 97.39 97.23 -
[1] Meshram P, Pandey B D, Mankhand T R. Extraction of lithium from primary and secondary sources by pre-treatment, leaching and separation:a comprehensive review[J]. Hydrometallurgy, 2014, 150:192-208. doi: 10.1016/j.hydromet.2014.10.012
[2] 余赞松, 陈明星, 龚杰.宜春钽铌矿资源综合利用现状及存在问题[J].现代矿业, 2007, 23(10):63-64. http://d.old.wanfangdata.com.cn/Periodical/kykb200710022
[3] 余生根.某大型铌钽矿综合利用试验研究[J].有色金属(选矿部分), 2005(5):13-18. doi: 10.3969/j.issn.1671-9492.2005.05.004
[4] 吕子虎, 赵登魁, 沙惠雨, 等.阴阳离子组合捕收剂浮选锂云母的试验研究[J].矿产保护与利用, 2017(2):81-84. http://kcbh.cbpt.cnki.net/WKD/WebPublication/paperDigest.aspx?paperID=2d98af83-8e4c-48ba-aef9-bf45bc9d50f5
[5] Bulatovic S M. Chapter 28-beneficiation of lithium ores[M]. Handbook of Flotation Reagents Chemistry Theory & Practice, 2015:41-56.
[6] Harold M, Cohen S L, Schafer G H. Process for recovering alkali metal values from lepidolite: US2940820[P]. 1960.
[7] 林高逵.江西锂云母-石灰石烧结工艺的改进研究[J].稀有金属与硬质合金, 1999(137):46-48. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK199901099845
[8] 郭春平, 周健, 文小强, 等.锂云母硫酸盐法提取锂铷铯的研究[J].有色金属(冶炼部分), 2015(12):31-33. doi: 10.3969/j.issn.1007-7545.2015.12.008
[9] Luong V T, Kang D J, An J W, et al. Iron sulphate roasting for extraction of lithium from lepidolite[J]. Hydrometallurgy, 2014, 141(2):8-16. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=JJ0232025960
[10] 王文祥, 黄际芬, 刘志宏.宜春锂云母压煮溶出新工艺研究[J].有色金属(冶炼部分), 2001(5):19-21. doi: 10.3969/j.issn.1007-7545.2001.05.007
[11] Q Yan, X Li, Z Wang, et al. Extraction of lithium from lepidolite using chlorination roasting-water leaching process[J]. Transactions of Nonferrous Metals Society of China, 2012, 22(7):1753-1759. doi: 10.1016/S1003-6326(11)61383-6
[12] Steinmetz A, Jean P D, Botton R. Method of recovering lithium from lepidolite: US3189407A[P]. 1965.
[13] 编委会.浸矿技术[M].北京:原子能出版社, 1995:511-535.
[14] 万洪强, 宁顺明, 佘宗华, 等.石煤钒矿拌酸熟化浸出新工艺[J].过程工程学报, 2013, 13(2):202-206. http://d.old.wanfangdata.com.cn/Periodical/hgyj201302005
-