Experimental Study on the Beneficiation of Aphanitic Graphite Ore from Lutang in Hunan
-
摘要:
为了开发湖南鲁塘隐晶质石墨矿,开展了选矿试验研究。该石墨矿矿物嵌布粒度极细且与绿泥石等易浮矿物紧密共生。根据矿石性质,研究了矿浆的分散和抑制对浮选的影响。本试验选用煤油为捕收剂,碳酸钠为分散剂,组合抑制剂(水玻璃与羧甲基纤维素钠质量比14:1)为抑制剂,以仲辛醇为起泡剂,同时强化搅拌作用,并且经三段磨矿、一次粗选和五次精选的闭路试验,在原矿固定碳含量70.28%的条件下,得到了固定碳含量87.26%、固定碳回收率76.45%的石墨精矿的选矿指标。对最终精矿镜下检测和扫描电镜分析查明:其品位难以进一步提高的主要原因为微细粒脉石以及超细粒的石墨-石英连生体矿物的存在,推荐采用化学提纯工艺作进一步处理。
Abstract:To utilize an aphanitic graphite ore from Lutang in Hunan province, the beneficiation research was conducted. The disseminated grain size of the ore is very fine and intimately associated with easy floating minerals such as chlorite. According to the nature of ore, the effect of slurry dispersion and inhibition on flotation was studied. In this study, kerosene was chose as the collector, sodium carbonate was used as the dispersant, a combined reagent (sodium silicate:sodium carboxymethyl cellulose=14:1) was used as the inhibitor, and secondary octanol was used as the frother. Finally, graphite concentrate with carbon content of 86.26% and recovery of 76.45% was collected from a raw ore with 70.28% carbon using a closed circuit with three stages of grinding, one stage of roughing and five stages of cleaning. The results of microscope and SEM observations of the final concentrate demonstrated that the difficulty in further improvement of grade could attribute to the existence of fine-grained gangue and ultra-fine grained graphite-quartz. Therefore, chemical purification process is recommended for further treatment.
-
Key words:
- aphanitic graphite /
- combined inhibitor /
- floatation /
- Lutang
-
-
表 1 矿石多元素分析 /%
Table 1. Chemical composition analysis of raw ore
成分 固定碳 SiO2 Al2O3 Fe2O3 CaO MgO K2O Na2O TiO2 P2O5 其他 - 含量 70.28 16.73 3.82 3.73 0.58 0.19 0.42 0.10 0.33 0.25 0.50 - 表 2 原矿主要矿物组成及相对含量 /%
Table 2. Main minerals and relative contents in raw ore
矿物 石英 石墨 褐铁矿 黄铁矿 绢云母类 黏土类 其它 含量 14.31 69.34 4.01 0.09 8.21 3.81 0.23 表 3 原矿中石墨的嵌布粒度
Table 3. Dissemination size of graphite in raw ore
粒径/mm 分布率/% 累计分布率/% 单体/% 连生体/% +0.01 1.04 1.04 10.3 89.7 -0.01+0.074 2.14 3.18 24.2 75.8 -0.074+0.038 19.81 22.99 59.3 40.7 -0.038+0.023 36.55 59.54 78.4 21.6 -0.023 40.46 100.00 93.2 6.8 原矿 100.00 100.00 78.7 21.3 表 4 闭路试验结果
Table 4. Results of the closed-circuit test
产品名称 产率/% 固定碳含量/% 回收率/% 精矿 61.57 87.26 76.45 尾矿 38.43 43.08 23.55 原矿 100.00 70.28 100.00 -
[1] 任瑞晨, 白扬, 马鸿鹏, 等.抑制剂对块状隐晶质石墨浮选试验影响研究[J].非金属矿, 2017(2):73-75. doi: 10.3969/j.issn.1000-8098.2017.02.020
[2] 张凌燕, 李向益, 邱杨率, 等.磐石地区隐晶质石墨矿选矿试验研究[J].非金属矿, 2012(3):35-37. doi: 10.3969/j.issn.1000-8098.2012.03.011
[3] 李哲.鳞片石墨浮选特性及工艺研究[D].北京: 中国矿业大学, 2010.
http://cdmd.cnki.com.cn/Article/CDMD-11413-2010240627.htm [4] 杨香风.石墨选矿及晶体保护试验研究[D].武汉: 武汉理工大学, 2010.
http://cdmd.cnki.com.cn/Article/CDMD-10497-1011058203.htm [5] 佟红格尔, 孙敬锋, 王林祥, 等.预先选别法保护鳞片石墨选矿工艺研究[J].矿产保护与利用, 2010(6):37-39. doi: 10.3969/j.issn.1001-0076.2010.06.010 http://kcbh.cbpt.cnki.net/WKD/WebPublication/paperDigest.aspx?paperID=d7e94332-82e3-41fb-a57e-b29cb47b7f96
[6] 段佳琪, 孙红娟, 彭同江.超声-混酸法提纯微晶石墨[J].非金属矿, 2017(1):58-61. doi: 10.3969/j.issn.1000-8098.2017.01.018
[7] 柳溪, 高惠民, 管俊芳.石墨选矿技术现状与趋势[J].高科技与产业化, 2014(2):68-73. http://d.old.wanfangdata.com.cn/Periodical/hqrwdl201612095
[8] 周开洪, 于伟, 丁行标.隐晶质石墨浮选初步研究[J].矿业研究与开发, 2012(4):58-59. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK201204203706
[9] 张琳, 方建军, 赵敏捷, 等.隐晶质石墨提纯研究进展[J].化工进展, 2017(1):261-267. http://d.old.wanfangdata.com.cn/Periodical/hgjz201701033
[10] 葛英勇, 侯静涛, 余俊.微细粒矿物浮选技术进展[J].金属矿山, 2010(12):90-94. http://d.old.wanfangdata.com.cn/Periodical/jsks201012023
-