Study on Influence of Vortex Finder Diameter on Flow Field and Separation Performance of Hydrocyclone
-
摘要:
利用RSM雷诺应力模型和VOF多相流模型,系统考察了溢流管直径对Φ50 mm水力旋流器流场稳定性的影响。通过对空气柱、零速包络面、短路流及湍流强度等流场特性的分析,确定了使流场稳定的最佳溢流管直径范围,并通过旋流分离物理试验进一步验证了该溢流管直径条件下获得的稳定流场能有效提高分离效率。研究结果表明,当溢流管直径过小时,空气柱会发生中断甚至不能完整形成,分选空间内部湍流强度较高,底流分流比较大,短路流量较小。随着溢流管直径的增加,逐渐形成上下贯通的空气柱,分选空间内部湍流强度降低,零速包络面的对称性增强,底流分流比逐渐降低,流场稳定性增强,从而分离性能增强。随着溢流管直径进一步增加,空气柱直径增大,短路流量增加,流场稳定性降低,从而分离效率下降。因此,针对所考察的Φ50 mm水力旋流器最佳的溢流管直径在0.30 D左右。
Abstract:By using RSM (Reynolds stress model) turbulence model and VOF (volume of fluid) multi-phase flow model, systematic numerical studies on the influence of vortex finder diameter on steady flow field of Φ50 mm hydrocyclone were investigated. The flow characteristics were analyzed in terms of air core, LZVV, short circuit flow and turbulence intensity. Further the range of vortex finder diameter was determined for steady flow field of hydrocyclone. Based on the physical experiments verification, the steady flow field optimized improved the separation efficiency. Results show that when the vortex finder diameter is too small, the air core cannot form completely, the turbulence intensity in the separation space is higher, the flow divertion ratio is large and the short circuit flow is smaller. With the increasing of the vortex finder diameter, the air core is gradually developing, the turbulence intensity reduces, the symmetry of LZVV is gradually enhancing and the flow divertion ratio is gradually reducing. Thus, the flow field stability and the separation performance are enhanced. With further increasing of the vortex finder diameter, the air core diameter and the short circuit flow increase, the stability of the flow field decreases inversely, consequently, the separation efficiency decreases. Therefore, a compromised optimum vortex finder diameter for the Φ50 mm hydrocyclone is around 0.30 D.
-
Key words:
- hydrocyclone /
- numerical simulation /
- steady flow field /
- air core /
- short circuit flow /
- turbulence intensity
-
-
表 1 溢流管直径变化量列表
Table 1. Vortex finder diameters investigated in this study
参数 变化量 溢流管直径do 0.18 D 0.24 D 0.30 D 0.36 D 表 2 赤铁矿纯矿物的粒度组成
Table 2. Particle-size composition of hematite sample
粒度/μm 累积产率/% +25 44.19 -25+20 53.67 -20+15 63.49 -15+10 73.34 -10+7 79.69 -7+5 84.59 -5+3 90.49 -3+2 93.92 -2+1 97.52 -1 100.00 表 3 溢流管直径的影响
Table 3. The influence of vortex finder diameter
溢流管直径 0.24 D 0.30 D 0.36 D 产品 溢流 沉砂 溢流 沉砂 溢流 沉砂 分流比/% 64.92 35.08 81.33 18.67 87.81 12.19 产品浓度/% 1.92 24.94 2.16 44.22 2.40 64.77 EP/μm 3.31 3.26 3.47 -
[1] 庞学诗.水力旋流器技术与应用[M].北京:中国石化出版社, 2011.
[2] 崔宝玉.水力旋流器流场及分离过程的数值试验研究[D].沈阳: 东北大学, 2014.
http://cdmd.cnki.com.cn/Article/CDMD-10145-1016011687.htm [3] Tang B, Xu Y, Song X, et al. Numerical study on the relationship between high sharpness and configurations of the vortex finderof a hydrocyclone by central composite design[J]. Chemical engineering journal, 2015, 278(S1):504-516. http://www.sciencedirect.com/science/article/pii/S138589471401465X
[4] Murthy Y R, Bhaskar K U. Parametric CFD studies on hydrocyclone[J]. Powder technology, 2012, 230:36-47. doi: 10.1016/j.powtec.2012.06.048
[5] Yanxia Xu, Xingfu Song, Ze Sun, et al. Numerical investigation of the effect of the ratio of the vortex-finder diameter to the spigot diameter on the steady state of the air core in a hydrocyclone[J]. Industrial and engineering chemistry research, 2013, 52(15):5470-5478. doi: 10.1021/ie302081v
[6] Cui B, Wei D, Gao S, et al. Numerical and experimental studies of flow field in hydrocyclone with air core[J]. Transactions of nonferrous metals society of china, 2014, 24(8):2642-2649. doi: 10.1016/S1003-6326(14)63394-X
[7] Ghodrat M, Kuang S B, Yu A B, et al. Numerical analysis of hydrocyclones with different vortex finder configurations[J]. Minerals engineering, 2014, 63:125-138. doi: 10.1016/j.mineng.2014.02.003
[8] Vakamalla T R, Kumbhar K S, Gujjula R, et al. Computational and experimental study of the effect of inclination on hydrocyclone performance[J]. Separation and purification technology, 2014, 138:104-117. doi: 10.1016/j.seppur.2014.10.013
[9] Silva D O, Vieira L, Barrozo M. Optimization of design and performance of solid-liquid separators:a thickener hydrocyclone[J]. Chemical engineering & technology, 2015, 38(2):319-326. http://onlinelibrary.wiley.com/doi/10.1002/ceat.201300464/pdf
[10] Yang Q, Wang H, Wang J, et al. The coordinated relationship between vortex finder parameters and performance of hydrocyclones for separating light dispersed phase[J]. Separation and purification technology, 2011, 79(3):310-320. doi: 10.1016/j.seppur.2011.03.012
[11] 牛伟.溢流管直径对旋流器分离效率影响的数值模拟[J].化工技术与开发, 2015(1):45-48. doi: 10.3969/j.issn.1671-9905.2015.01.014
[12] Delgadillo J A, Rajamani R K. A comparative study of three turbulence-closure models for the hydrocyclone problem[J]. International journal of mineral processing, 2005, 77(4):217-230. doi: 10.1016/j.minpro.2005.06.007
[13] 崔宝玉, 魏德洲, 翟庆祥, 等.水力旋流器内部流场的数值研究[J].东北大学学报(自然科学版), 2014(6):894-897. doi: 10.3969/j.issn.1005-3026.2014.06.030
-