溢流管直径对旋流器流场和分离影响研究

徐冬林, 王长艳, 傅国辉, 张旭, 魏德洲. 溢流管直径对旋流器流场和分离影响研究[J]. 矿产保护与利用, 2019, 39(1): 64-68. doi: 10.13779/j.cnki.issn1001-0076.2019.01.013
引用本文: 徐冬林, 王长艳, 傅国辉, 张旭, 魏德洲. 溢流管直径对旋流器流场和分离影响研究[J]. 矿产保护与利用, 2019, 39(1): 64-68. doi: 10.13779/j.cnki.issn1001-0076.2019.01.013
XU Donglin, WANG Changyan, FU Guohui, ZHANG Xu, WEI Dezhou. Study on Influence of Vortex Finder Diameter on Flow Field and Separation Performance of Hydrocyclone[J]. Conservation and Utilization of Mineral Resources, 2019, 39(1): 64-68. doi: 10.13779/j.cnki.issn1001-0076.2019.01.013
Citation: XU Donglin, WANG Changyan, FU Guohui, ZHANG Xu, WEI Dezhou. Study on Influence of Vortex Finder Diameter on Flow Field and Separation Performance of Hydrocyclone[J]. Conservation and Utilization of Mineral Resources, 2019, 39(1): 64-68. doi: 10.13779/j.cnki.issn1001-0076.2019.01.013

溢流管直径对旋流器流场和分离影响研究

  • 基金项目:
    国家自然科学基金资助项目(51474054,51504054)
详细信息
    作者简介: 徐冬林(1970-), 男, 教授级高工, 首席工程师
  • 中图分类号: TD922

Study on Influence of Vortex Finder Diameter on Flow Field and Separation Performance of Hydrocyclone

  • 利用RSM雷诺应力模型和VOF多相流模型,系统考察了溢流管直径对Φ50 mm水力旋流器流场稳定性的影响。通过对空气柱、零速包络面、短路流及湍流强度等流场特性的分析,确定了使流场稳定的最佳溢流管直径范围,并通过旋流分离物理试验进一步验证了该溢流管直径条件下获得的稳定流场能有效提高分离效率。研究结果表明,当溢流管直径过小时,空气柱会发生中断甚至不能完整形成,分选空间内部湍流强度较高,底流分流比较大,短路流量较小。随着溢流管直径的增加,逐渐形成上下贯通的空气柱,分选空间内部湍流强度降低,零速包络面的对称性增强,底流分流比逐渐降低,流场稳定性增强,从而分离性能增强。随着溢流管直径进一步增加,空气柱直径增大,短路流量增加,流场稳定性降低,从而分离效率下降。因此,针对所考察的Φ50 mm水力旋流器最佳的溢流管直径在0.30 D左右。

  • 加载中
  • 图 1  水力旋流器几何模型

    Figure 1. 

    图 2  溢流管直径对空气柱形状的影响

    Figure 2. 

    图 3  溢流管直径对湍流强度的影响

    Figure 3. 

    图 4  溢流管直径对径向速度的影响

    Figure 4. 

    图 5  溢流管直径对LZVV形状的影响

    Figure 5. 

    图 6  溢流管直径对分离粒度的影响

    Figure 6. 

    表 1  溢流管直径变化量列表

    Table 1.  Vortex finder diameters investigated in this study

    参数 变化量
    溢流管直径do 0.18 D 0.24 D 0.30 D 0.36 D
    下载: 导出CSV

    表 2  赤铁矿纯矿物的粒度组成

    Table 2.  Particle-size composition of hematite sample

    粒度/μm 累积产率/%
    +25 44.19
    -25+20 53.67
    -20+15 63.49
    -15+10 73.34
    -10+7 79.69
    -7+5 84.59
    -5+3 90.49
    -3+2 93.92
    -2+1 97.52
    -1 100.00
    下载: 导出CSV

    表 3  溢流管直径的影响

    Table 3.  The influence of vortex finder diameter

    溢流管直径 0.24 D 0.30 D 0.36 D
    产品 溢流 沉砂 溢流 沉砂 溢流 沉砂
    分流比/% 64.92 35.08 81.33 18.67 87.81 12.19
    产品浓度/% 1.92 24.94 2.16 44.22 2.40 64.77
    EP/μm 3.31 3.26 3.47
    下载: 导出CSV
  • [1]

    庞学诗.水力旋流器技术与应用[M].北京:中国石化出版社, 2011.

    [2]

    崔宝玉.水力旋流器流场及分离过程的数值试验研究[D].沈阳: 东北大学, 2014.http://cdmd.cnki.com.cn/Article/CDMD-10145-1016011687.htm

    [3]

    Tang B, Xu Y, Song X, et al. Numerical study on the relationship between high sharpness and configurations of the vortex finderof a hydrocyclone by central composite design[J]. Chemical engineering journal, 2015, 278(S1):504-516. http://www.sciencedirect.com/science/article/pii/S138589471401465X

    [4]

    Murthy Y R, Bhaskar K U. Parametric CFD studies on hydrocyclone[J]. Powder technology, 2012, 230:36-47. doi: 10.1016/j.powtec.2012.06.048

    [5]

    Yanxia Xu, Xingfu Song, Ze Sun, et al. Numerical investigation of the effect of the ratio of the vortex-finder diameter to the spigot diameter on the steady state of the air core in a hydrocyclone[J]. Industrial and engineering chemistry research, 2013, 52(15):5470-5478. doi: 10.1021/ie302081v

    [6]

    Cui B, Wei D, Gao S, et al. Numerical and experimental studies of flow field in hydrocyclone with air core[J]. Transactions of nonferrous metals society of china, 2014, 24(8):2642-2649. doi: 10.1016/S1003-6326(14)63394-X

    [7]

    Ghodrat M, Kuang S B, Yu A B, et al. Numerical analysis of hydrocyclones with different vortex finder configurations[J]. Minerals engineering, 2014, 63:125-138. doi: 10.1016/j.mineng.2014.02.003

    [8]

    Vakamalla T R, Kumbhar K S, Gujjula R, et al. Computational and experimental study of the effect of inclination on hydrocyclone performance[J]. Separation and purification technology, 2014, 138:104-117. doi: 10.1016/j.seppur.2014.10.013

    [9]

    Silva D O, Vieira L, Barrozo M. Optimization of design and performance of solid-liquid separators:a thickener hydrocyclone[J]. Chemical engineering & technology, 2015, 38(2):319-326. http://onlinelibrary.wiley.com/doi/10.1002/ceat.201300464/pdf

    [10]

    Yang Q, Wang H, Wang J, et al. The coordinated relationship between vortex finder parameters and performance of hydrocyclones for separating light dispersed phase[J]. Separation and purification technology, 2011, 79(3):310-320. doi: 10.1016/j.seppur.2011.03.012

    [11]

    牛伟.溢流管直径对旋流器分离效率影响的数值模拟[J].化工技术与开发, 2015(1):45-48. doi: 10.3969/j.issn.1671-9905.2015.01.014

    [12]

    Delgadillo J A, Rajamani R K. A comparative study of three turbulence-closure models for the hydrocyclone problem[J]. International journal of mineral processing, 2005, 77(4):217-230. doi: 10.1016/j.minpro.2005.06.007

    [13]

    崔宝玉, 魏德洲, 翟庆祥, 等.水力旋流器内部流场的数值研究[J].东北大学学报(自然科学版), 2014(6):894-897. doi: 10.3969/j.issn.1005-3026.2014.06.030

  • 加载中

(6)

(3)

计量
  • 文章访问数:  1914
  • PDF下载数:  78
  • 施引文献:  0
出版历程
收稿日期:  2019-01-04
刊出日期:  2019-02-25

目录