-
摘要:
采用等温溶解平衡法研究了三元体系Li+,Cs+//SO42--H2O 298 K稳定相平衡关系。测定了平衡液相各组分溶解度、密度和折光率数据并绘制了相应的等温平衡相图、密度-组成图和折光率-组成图。结果表明:该体系属于复杂体系,有复盐3Li2SO4·Cs2SO4·2H2O和Li2SO4·Cs2SO4形成;其稳定相图由4个固相结晶区、4条单变量曲线和3个相称共饱点组成,4个固相结晶区分别对应Li2SO4·H2O、3Li2SO4·Cs2SO4·2H2O、Li2SO4·Cs2SO4和Cs2SO4。
Abstract:The stable phase equilibria of the ternary system Li+, Cs+//SO42--H2O at 298 K were studied using isothermal solubility equilibrium method. The solubility, density and refractive index of the equilibrium liquid phase were measured and the corresponding equilibrium phase diagram, density-composition diagram and refractive index-composition diagram were plotted. The results indicated that the system is a complex one with the formation of double salts, such as 3Li2SO4·Cs2SO4·2H2O and Li2SO4·Cs2SO4. The stable phase diagram consists of four solid phase crystallization zones, four univariate curves and three commensurate invariant points. The four solid phase crystallization zones correspond to the salts of Li2SO4·H2O, 3Li2SO4·Cs2SO4·2H2O, Li2SO4·Cs2SO4 and Cs2SO4.
-
Key words:
- stable phase diagram /
- lithium /
- cesium /
- solubility /
- double salt
-
-
表 1 三元体系Li+, Cs+//SO42--H2O 298 K溶解度、密度、折光率测定值
Table 1. Measured values of solubility, density and refractive index of the ternary system Li+, Cs+//SO42--H2O at 298 K
序号 密度/ρ(g·cm-3) 折光率/ nD 平衡液相组成/% 湿固相组成/% 平衡固相 w(Li2SO4) w(Cs2SO4) w(Li2SO4) w(Cs2SO4) 1, M 1.223 0 1.372 8 25.85 0.00 - - LS 2 1.214 7 1.371 4 23.98 1.65 46.71 2.12 LS 3 1.214 0 1.370 3 23.07 2.15 44.81 2.31 LS 4 1.211 6 1.369 4 22.60 2.51 37.80 3.27 LS 5 1.209 6 1.368 5 21.64 3.12 42.19 3.24 LS 6 1.209 4 1.367 5 20.63 4.37 45.45 3.69 LS 7 1.209 2 1.367 3 19.45 5.36 40.41 3.52 LS 8 1.209 0 1.366 6 18.23 7.85 40.61 4.18 LS 9, A 1.208 8 1.366 9 17.77 8.82 45.01 13.85 LS+LCS 10 1.234 7 1.368 0 16.90 10.04 45.38 41.69 LCS 11 1.250 6 1.368 4 16.09 12.33 45.12 42.57 LCS 12 1.279 3 1.369 7 15.25 14.53 41.97 40.06 LCS 13 1.300 5 1.370 5 14.50 16.52 45.18 42.98 LCS 14 1.312 9 1.371 8 13.71 18.39 45.57 43.22 LCS 15 1.318 8 1.374 5 13.08 21.10 45.80 43.43 LCS 16, B 1.372 7 1.376 5 12.32 23.15 39.78 48.60 LCS+LC 17 1.390 5 1.376 5 12.32 24.74 24.38 72.30 LC 18 1.399 0 1.376 6 11.53 26.70 23.20 74.36 LC 19 1.417 0 1.377 1 10.49 29.07 22.66 75.94 LC 20 1.444 5 1.377 9 9.92 31.20 22.76 76.60 LC 21 1.467 8 1.378 6 8.86 32.06 22.21 75.96 LC 22 1.461 2 1.379 2 8.04 34.70 23.62 70.66 LC 23 1.503 2 1.380 5 7.60 36.54 22.94 76.28 LC 24 1.513 7 1.381 0 6.33 39.88 21.49 70.48 LC 25 1.547 1 1.382 9 5.74 41.96 22.30 72.47 LC 26 1.537 2 1.382 3 5.76 43.10 21.89 70.41 LC 27 1.691 9 1.391 0 3.32 51.13 20.90 74.06 LC 28 1.746 6 1.394 5 2.61 53.72 22.67 71.56 LC 29 1.737 4 1.394 4 2.71 53.86 21.63 72.60 LC 30 1.810 8 1.398 5 2.04 56.60 21.56 71.70 LC 31 1.867 7 1.401 7 1.62 58.84 21.29 73.70 LC 32 1.933 7 1.407 0 1.23 61.44 23.33 76.22 LC 33 1.954 1 1.407 5 1.14 62.35 22.41 73.85 LC 34 2.019 4 1.411 5 0.87 64.87 0.07 95.41 LC 35, C 2.004 3 1.411 5 0.75 65.33 9.58 88.56 LC+CS 36, N 2.010 8 1.411 6 0.00 65.10 - - CS 注: LS-Li2SO4·H2O; LC-Li2SO4·Cs2SO4; LCS-3Li2SO4·Cs2SO4·2H2O; CS-Cs2SO4。 -
[1] 桑世华, 张婷婷, 傅超, 等.四元体系Li+, K+, Mg2+//B4O72--H2O 273 K相平衡[J].化工学报, 2017, 68(9):3343-3349.
[2] 陆智凭, 国怀专, 孙志伟.柴达木盆地盐湖矿产开发利用存在的问题与建议[J].矿产保护与利用, 2010(5):11-14. doi: 10.3969/j.issn.1001-0076.2010.05.004 http://kcbh.cbpt.cnki.net/WKD/WebPublication/paperDigest.aspx?paperID=5fb3ee1f-4040-41f3-b633-b0485ad11221
[3] 郑绵平, 卜令忠.盐湖资源的合理开发与综合利用[J].矿产保护与利用, 2009(1):17-22. doi: 10.3969/j.issn.1001-0076.2009.01.004 http://kcbh.cbpt.cnki.net/WKD/WebPublication/paperDigest.aspx?paperID=2ce31de6-0c09-4646-adfc-061f041faef3
[4] Yu X. D., Zeng Y., Mu P. T., et al. Solid-liquid equilibria in the quinary system LiCl-KCl-RbCl-MgCl2-H2O at T=323 K[J]. Fluid phase equilib, 2015, 387:88-94. doi: 10.1016/j.fluid.2014.12.021
[5] 樊启顺, 马海州, 谭红兵, 等.柴达木盆地西部卤水特征及成因探讨[J].地球化学, 2007, 36(6):601-611. doi: 10.3321/j.issn:0379-1726.2007.06.008
[6] 黄西平.国内外盐湖(地下)卤水资源综合利用综述[J].海洋技术学报, 2002, 21(4):66-72. http://d.old.wanfangdata.com.cn/Periodical/hyjs200204015
[7] 田向东, 王云生, 侯献华.柴达木北部新盐带卤水水化学特征研究[J].盐科学与化工, 2013, 42(12):8-12. http://d.old.wanfangdata.com.cn/Periodical/hhyyhg201312003
[8] 张西营, 马海州, 高东林, 等.柴达木盆地西台吉乃尔盐湖矿区卤水水化学特征[J].盐湖研究, 2007(2):12-20. doi: 10.3969/j.issn.1008-858X.2007.02.003
[9] 李廷伟, 谭红兵, 樊启顺.柴达木盆地西部地下卤水水化学特征及成因分析[J].盐湖研究, 2006, 14(4):26-32. doi: 10.3969/j.issn.1008-858X.2006.04.005
[10] 韩佳君, 周训, 姜长龙, 等.柴达木盆地西部地下卤水水化学特征及其起源演化[J].现代地质, 2013(6):1454-1464. doi: 10.3969/j.issn.1000-8527.2013.06.025
[11] 张彭熹.柴达木盆地盐湖[M].北京:科学出版社, 1987:138-139.
[12] Zeng Y., Lin X. F., Yu X. D. Study on the solubility of the aqueous quaternary system Li2SO4+Na2SO4+K2SO4+H2O at 273.15 K[J]. J. chem. eng. data, 2012, 57(12):3672-3676. doi: 10.1021/je300874c
[13] 曾英, 林晓峰, 郑志远.Li+, K+//SO42-, B4O72--H2O交互四元体系273 K介稳相平衡研究[J].高校化学工程学报, 2009(1):7-11. doi: 10.3321/j.issn:1003-9015.2009.01.002
[14] Wollmann G., Voigt W. Solid-liquid phase equilibria in the system K+, Mg2+//SO42--H2O at 318 K[J]. Fluid phase equilib, 2010, 291(2):151-153. doi: 10.1016/j.fluid.2009.12.005
[15] Liu Y., Guo Y., Yu X., et al. Solid-liquid metastable phase equilibria in the five-component system (Li+Na+K+Cl+SO4+H2O) at 308.15 K[J]. J. Chem. eng. data, 2014, 59(5):1685-1691. doi: 10.1021/je500140e
[16] 桑世华, 殷辉安, 曾英, 等.Li+, Na+//SO42-, CO32--H2O交互四元体系288 K介稳相平衡研究[J].化学学报, 2006, 64(22):2247-2253. doi: 10.3321/j.issn:0567-7351.2006.22.007
[17] 孙柏, 宋彭生.盐湖卤水体系Li+, Mg2+//Cl-, SO42-, borate-H2O的研究[J].盐湖研究, 1994(4):26-30.
[18] Sang S. H., Peng J. (Solid+liquid) equilibria in the quinary system Na+, Mg2+, K+SO42-, B4O72--H2O math container loading mathjax at 288 K[J]. Calphad, 2010, 34(1):64-67. doi: 10.1016/j.calphad.2009.12.001
[19] Ye C., Zheng M., Wang Z., et al. Hydrochemical characteristics and sources of brines in the Gasikule salt lake, Northwest Qaidam Basin, China[J]. Geochem. J., 2015, 49(5):481-494. doi: 10.2343/geochemj.2.0372
[20] 宋彭生, 董亚萍, 李武.Li+, Na+, K+//Cl-, SO42--H2O五元体系25 ℃相图及其应用[J].盐湖研究, 2017, 25(3):9-17.
[21] Wang F. Y. Thermodynamic simulation on Rb2SO4-Cs2SO4-MgSO4-H2O system at 25 ℃[J]. Asian J. chem., 2013, 25(13):7631-7632. doi: 10.14233/ajchem
[22] 牛自得.水盐体系相图及其应用[M].天津:天津大学出版社, 2002:172-182.
[23] 中科院青海盐湖所.卤水和盐的分析方法[M].北京:科学与技术出版社, 1984:75-78.
[24] Fosbol P. L., Thomsen K., Stenby E. H. Reverse schreinemakers method for experimental analysis of mixed-solvent electrolyte systems[J]. J. solution chem., 2009, 38(1):1-14. doi: 10.1007/s10953-008-9353-4
-