典型金属离子对闪锌矿浮选行为的影响及作用机制的研究进展

曾勇, 刘建, 王瑜, 罗德强. 典型金属离子对闪锌矿浮选行为的影响及作用机制的研究进展[J]. 矿产保护与利用, 2019, 39(2): 109-117. doi: 10.13779/j.cnki.issn1001-0076.2019.02.017
引用本文: 曾勇, 刘建, 王瑜, 罗德强. 典型金属离子对闪锌矿浮选行为的影响及作用机制的研究进展[J]. 矿产保护与利用, 2019, 39(2): 109-117. doi: 10.13779/j.cnki.issn1001-0076.2019.02.017
ZENG Yong, LIU Jian, WANG Yu, LUO Deqiang. Research Progress on the Interaction Mechanism of Typical Metal Ions with Sphalerite and Its Effect on Flotation[J]. Conservation and Utilization of Mineral Resources, 2019, 39(2): 109-117. doi: 10.13779/j.cnki.issn1001-0076.2019.02.017
Citation: ZENG Yong, LIU Jian, WANG Yu, LUO Deqiang. Research Progress on the Interaction Mechanism of Typical Metal Ions with Sphalerite and Its Effect on Flotation[J]. Conservation and Utilization of Mineral Resources, 2019, 39(2): 109-117. doi: 10.13779/j.cnki.issn1001-0076.2019.02.017

典型金属离子对闪锌矿浮选行为的影响及作用机制的研究进展

  • 基金项目:
    国家自然科学基金(51764037);国家自然科学基金(51704135)
详细信息
    作者简介: 曾勇(1993-), 男, 硕士研究生, 研究方向为浮选表面化学
    通讯作者: 刘建(1984-), 男, 汉族, 四川广元人, 副教授, 博士, 硕士生导师, 主要从事矿产资源综合利用、浮选表面、界面及量子化学等研究, E-mail:vacation2008@126.com
  • 中图分类号: TD952.3

Research Progress on the Interaction Mechanism of Typical Metal Ions with Sphalerite and Its Effect on Flotation

More Information
  • 典型金属离子对闪锌矿浮选行为具有显著影响。总结了闪锌矿浮选矿浆体系中金属离子的来源,综述了Cu2+、Pb2+、Fe2+、Fe3+、Ca2+、Mg2+、Zn2+等金属离子对闪锌矿浮选行为的影响及其作用机制。根据金属离子本身的性质和浮选环境的不同,其作用效果和作用机制也有不同,分析表明金属离子是通过取代、吸附和覆盖的方式对闪锌矿可浮性产生影响。展望了金属离子在闪锌矿浮选中的应用前景,并提出了闪锌矿与金属离子作用机制的研究方向。

  • 加载中
  • 图 1  铜在闪锌矿表面取代和氧化模型

    Figure 1. 

    图 2  Pb2+在闪锌矿表面的吸附

    Figure 2. 

    表 1  流体包裹体释放的离子的浓度

    Table 1.  The ion concentration of fluid inclusion releasing

    矿物 磨矿后流体包裹体释放的离子浓度(×10-6 mol/L)
    Ca2+ Mg2+ Cu2+ Fe3+ Cl- SO42- Pb2+
    闪锌矿[11] 1.53 0.22 - - - - -
    闪锌矿[12] - - 0.62 - - - -
    方铅矿[13] - - - - 35.43 - 8.25
    黄铜矿[14] - - 5.79 17.20 107.76 94.51 -
    黄铜矿[12] - - 1.02 - - - -
    斑铜矿[15] - - 1.11 2.51 8.91 30.00 -
    下载: 导出CSV
  • [1]

    刘建.闪锌矿表面原子构型及铜吸附活化浮选理论研究[D].昆明: 昆明理工大学, 2013.http://cdmd.cnki.com.cn/Article/CDMD-10674-1015641661.htm

    [2]

    Kirjavainen V, Schreithofer N, Heiskanen K. Effect of calcium and thiosulfate ions on flotation selectivity of nickel-copper ores[J]. Minerals engineering, 2002, 15(1):1-5. http://www.sciencedirect.com/science/article/pii/S0892687501002138

    [3]

    Dávila-Pulido G, Uribe-Salas A, álvarez-Silva M, et al. The role of calcium in xanthate adsorption onto sphalerite[J]. Minerals engineering, 2015, 71:113-119. doi: 10.1016/j.mineng.2014.09.004

    [4]

    Kartio I J, Basilio C I, Yoon R H. An XPS study of sphalerite activation by copper[J]. Langmuir, 1998, 14(18):5274-5278. doi: 10.1021/la970440c

    [5]

    Sarvaramini A, Larachi F, Hart B. Collector attachment to lead-activated sphalerite-experiments and DFT study on pH and solvent effects[J]. Applied surface science, 2016, 367:459-472. doi: 10.1016/j.apsusc.2016.01.213

    [6]

    胡熙庚.有色金属硫化矿选矿[M].北京:冶金工业出版社, 1987.

    [7]

    Huston D L, Sie S H, Suter G F, et al. Trace elements in sulfide minerals from eastern Australian volcanic-hosted massive sulfide deposits; Part Ⅰ, proton microprobe analyses of pyrite, chalcopyrite, and sphalerite, and Part Ⅱ, selenium levels in pyrite; comparison with delta 34 S values and implications for the source of sulfur in volcanogenic hydrothermal systems[J]. Economic geology, 1995, 90(5):1167-1196. doi: 10.2113/gsecongeo.90.5.1167

    [8]

    陈建华, 曾小钦, 陈晔, 等.含空位和杂质缺陷的闪锌矿电子结构的第一性原理计算[J].中国有色金属学报, 2010, 20(4):765-71. http://d.old.wanfangdata.com.cn/Periodical/zgysjsxb201004027

    [9]

    Basilio C I, Kartio I J, Yoon R H. Lead activation of sphalerite during galena flotation[J]. Minerals engineering, 1996, 9(8):870-879. http://www.sciencedirect.com/science/article/pii/0892687596000787

    [10]

    黄福根, 肖鹂.方铅矿浮选时闪放的铅活化[J].国外选矿快报, 1997(16): 7-12. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK199701079908

    [11]

    Liu J, Wen S, Wu D, et al. Determination of the concentrations of calcium and magnesium released from fluid inclusions of sphalerite and quartz[J]. Minerals engineering, 2013, 45(3):41-43. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=e1abfa77c5fbc081c0c5d5871fee42b9

    [12]

    Deng J, Mao Y, Wen S, et al. New influence factor inducing difficulty in selective flotation separation of Cu-Zn mixed sulfide minerals[J]. International journal of minerals, metallurgy, and materials, 2015, 22(2):111-115. doi: 10.1007/s12613-015-1050-x

    [13]

    Bai S, Wen S, Xian Y, et al. New source of unavoidable ions in galena flotation pulp: components released from fluid inclusions[J]. Minerals engineering, 2013, 45:94-99. doi: 10.1016/j.mineng.2013.02.001

    [14]

    Deng J, Wen S, Xian Y, et al. New discovery of unavoidable ions source in chalcopyrite flotation pulp: fluid inclusions[J]. Minerals engineering, 2013, 42:22-8. doi: 10.1016/j.mineng.2012.10.010

    [15]

    Deng J, Wen S, Wu D, et al. Existence and release of fluid inclusions in bornite and its associated quartz and calcite[J]. International journal of minerals metallurgy & materials, 2013, 20(9):815-822. http://www.cqvip.com/QK/85313X/201309/47435951.html

    [16]

    孙昊, 孙体昌, 朱阳戈, 等.水质对十二酸浮选分离菱镁矿与白云石的影响研究[J].有色金属(选矿部分), 2017(5):89-92. doi: 10.3969/j.issn.1671-9492.2017.05.020

    [17]

    Ikumapayi F, Makitalo M, Johansson B, et al. Recycling process water in sulphide flotation: effect of calcium and sulphate on sphalerite recovery[J]. Minerals engineering, 2012, 29(4):45-64. http://www.sciencedirect.com/science/article/pii/S0892687512002671

    [18]

    钟素姣.磨矿对方铅矿和闪锌矿浮选行为的影响研究[D].长沙: 中南大学, 2006.http://d.wanfangdata.com.cn/Thesis/Y997676

    [19]

    Grano S. The critical importance of the grinding environment on fine particle recovery in flotation[J]. Minerals engineering, 2009, 22(4): 386-394. doi: 10.1016/j.mineng.2008.10.008

    [20]

    黄凌云.闪锌矿晶体结构性质及其铜活化作用[J].矿产保护与利用, 2018(3):26-30. http://kcbh.cbpt.cnki.net/WKD/WebPublication/paperDigest.aspx?paperID=96b0acd6-ce96-4c98-b89f-9a2afe8128ad

    [21]

    Sun S, Liu R, Song W. An electrochemical investigation on collectorless flotation of sphalerite in presence of Cu2+ ions[J]. Trans. nonferrous met. soc. China, 2000, 10(S1):56-60. http://www.cnki.com.cn/Article/CJFDTotal-ZYSY2000S1010.htm

    [22]

    Ravitz S F, Wall W A. The adsorption of copper sulfate by sphalerite and its relation to flotation[J]. J. phys. chem., 2002, 38(1):13-18. http://pubs.acs.org/doi/pdf/10.1021/j150352a002

    [23]

    李宁.铜锌硫化矿浮选分离研究[D].长沙: 中南大学, 2012.http://cdmd.cnki.com.cn/Article/CDMD-10533-1012477129.htm

    [24]

    聂光华, 李帅, 邱盛华.某铁闪锌矿浮选试验研究[J].矿冶工程, 2012, 32(4):44-47. doi: 10.3969/j.issn.0253-6099.2012.04.012

    [25]

    Buckley A N, Woods R, Wouterlood H J. An XPS investigation of the surface of natural sphalerites under flotation-related conditions[J]. International journal of mineral processing, 1989, 26(1-2):29-49. doi: 10.1016/0301-7516(89)90041-0

    [26]

    Finkelstein N P. The activation of sulphide minerals for flotation: a review[J]. International journal of mineral processing, 1997, 52(2-3):81-120. doi: 10.1016/S0301-7516(97)00067-7

    [27]

    Gerson A R, Lange A G, Prince K E, et al. The mechanism of copper activation of sphalerite[J]. Applied surface science, 1999, 137(1-4):207-223. doi: 10.1016/S0169-4332(98)00499-1

    [28]

    Gu G, Wang D, Liu R. Electrochemical mechanisms on cupric sulphate activating sphalerite[J]. Journal of central south university of technology, 1999, 30(4):374-377. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK199901143630

    [29]

    Ejtemaei M, Nguyen A V. Characterisation of sphalerite and pyrite surfaces activated by copper sulphate[J]. Minerals engineering, 2017, 100:223-232. doi: 10.1016/j.mineng.2016.11.005

    [30]

    Laskowski J S, Liu Q, Zhan Y. Sphalerite activation: flotation and electrokinetic studies[J]. Minerals engineering, 1997, 10(8):787-802. doi: 10.1016/S0892-6875(97)00057-5

    [31]

    谢广元, 张明旭, 边炳鑫.选矿学[M].徐州:中国矿业大学出版社, 2001.

    [32]

    Chandra A P, Gerson A R. A review of the fundamental studies of the copper activation mechanisms for selective flotation of the sulfide minerals, sphalerite and pyrite[J]. Adv colloid interface sci, 2009, 145(1):97-110. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=a66874d08502a4c2f2613160a354b471

    [33]

    Boulton A B, Fornasiero D, Ralston J. Characterisation of sphalerite and pyrite flotation samples by XPS and ToF-SIMS[J]. International journal of mineral processing, 2003, 65(1):205-219. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=df8e9a419c881949d50514adb577df5c

    [34]

    Ralston O C, King C R, Tartaron F X. Copper sulfate as flotation activator for sphalerite[J]. Trans. AIME, 1930, 87:389-400.

    [35]

    Liu J, Zeng Y, Luo D, et al. Ab initio molecule dynamic simulation of Cu(OH)2 interaction with sphalerite (1 : 1 : 0) surface[J]. Minerals engineering, 2018, 122:176-178. doi: 10.1016/j.mineng.2018.04.003

    [36]

    Fuerstenau D W, Metzger P H. Activation of sphalerite with lead ions in the presence of zinc salts[J]. Minerals engineering, 1960, 217:119-123.

    [37]

    Popov S R, Vuini D R, Kaanik J V. Floatability and adsorption of ethyl xanthate on sphalerite in an alkaline medium in the presence of dissolved lead ions[J]. International journal of mineral processing, 1989, 27(3-4):205-219. doi: 10.1016/0301-7516(89)90065-3

    [38]

    Trahar W J, Senior G D, Heyes G W, et al. The activation of sphalerite by lead a flotation perspective[J]. International journal of mineral processing, 1997, 49(3-4):121-148. doi: 10.1016/S0301-7516(96)00041-5

    [39]

    Pattrick R A D, Charnock J M, England K E R, et al. Lead sorption on the surface of ZnS with relevance to flotation: a fluorescence reflexafs study[J]. Minerals engineering, 1998, 11(11):1025-33. doi: 10.1016/S0892-6875(98)00090-9

    [40]

    Steele H M, Wright K, Hillier I H. A quantum-mechanical study of the (110) surface of sphalerite (ZnS) and its interaction with Pb2+ species[J]. Physics and chemistry of minerals, 2003, 30(2):69-75. doi: 10.1007/s00269-002-0296-9

    [41]

    Morey M S, Grano S R, Ralston J, et al. The electrochemistry of Pb Ⅱ activated sphalerite in relation to flotation[J]. Minerals engineering, 2001, 14(9):1009-1017. doi: 10.1016/S0892-6875(01)00108-X

    [42]

    Rashchi F, Sui C, Finch J A. Sphalerite activation and surface Pb ion concentration[J]. International journal of mineral processing, 2002, 67(1):43-58. http://d.old.wanfangdata.com.cn/NSTLQK/NSTL_QKJJ029606750/

    [43]

    Sui C, Lee D, Casuge A, et al. Comparison of the activation of sphalerite by copper and lead[J]. Minerals engineering, 1999, 16(3):53-61. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=76a20353e89f22e708c569c25390ff8b

    [44]

    Zhang Q, Rao S R, Finch J A. Flotation of sphalerite in the presence of iron ions[J]. Colloids & surfaces, 1992, 66(2):81-89. http://www.sciencedirect.com/science/article/pii/016666229280123J

    [45]

    童雄, 周庆华, 何剑, 等.铁闪锌矿的选矿研究概况[J]. 2006(6): 8-12.

    [46]

    Chen Y, Chen J, Guo J. A DFT study on the effect of lattice impurities on the electronic structures and floatability of sphalerite[J]. Minerals engineering, 2010, 23(14):1120-1130. doi: 10.1016/j.mineng.2010.07.005

    [47]

    Ye C, Chen J, Lan L, et al. The influence of the impurities on the flotation behaviors of synthetic ZnS[J]. Minerals engineering, 2012, 27-28(1):65-71. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=b56aff827b38f1140642eb342d0b05ea

    [48]

    Liu J, Wang Y, Luo D, et al. Comparative study on the copper activation and xanthate adsorption on sphalerite and marmatite surfaces[J]. Applied surface science, 2018, 439:263-271. doi: 10.1016/j.apsusc.2018.01.032

    [49]

    Chen Y, Chen J. The first-principle study of the effect of lattice impurity on adsorption of CN- on sphalerite surface[J]. Minerals engineering, 2010, 23(9):676-684. doi: 10.1016/j.mineng.2010.04.002

    [50]

    Solecki J, 詹德俊.铜离子对不同铁含量混合闪锌矿的活化作用[J].国外金属矿选矿, 1982(1):19-22. http://www.cnki.com.cn/Article/CJFDTOTAL-JSXK198201002.htm

    [51]

    Szczypa J, Solecki J, Komosa A. Effect of surface oxidation and iron contents on xanthate ions adsorption of synthetic sphalerites[J]. International journal of mineral processing, 1980, 7(2):151-157. doi: 10.1016/0301-7516(80)90007-1

    [52]

    Scott J L, Smith R W. Calcium ion effects in amine flotation of quartz and magnetite[J]. Minerals engineering, 1993, 6(12):1245-1255. doi: 10.1016/0892-6875(93)90102-S

    [53]

    Liu Q, Zhang Y. Effect of calcium ions and citric acid on the flotation separation of chalcopyrite from galena using dextrin[J]. Minerals engineering, 2000, 13(13):1405-1416. doi: 10.1016/S0892-6875(00)00122-9

    [54]

    Zhang W, Honaker R Q, Groppo J G. Flotation of monazite in the presence of calcite part Ⅰ: calcium ion effects on the adsorption of hydroxamic acid[J]. Minerals engineering, 2017, 100:40-48. doi: 10.1016/j.mineng.2016.09.020

    [55]

    Ejtemaei M, Plackowski C, Nguyen A V. The effect of calcium, magnesium, and sulphate ions on the surface properties of copper activated sphalerite[J]. Minerals engineering, 2016, 89: 42-51. doi: 10.1016/j.mineng.2016.01.005

    [56]

    Lascelles D, Finch J A, Sui C. Depressant action of Ca and Mg on flotation of Cu activated sphalerite[J]. Canadian metallurgical quarterly, 2013, 42(2):133-140. http://www.tandfonline.com/doi/abs/10.1179/cmq.2003.42.2.133

    [57]

    孙伟, 胡岳华, 邱冠周, 等.闪锌矿(110)表面离子吸附的动力学模拟[J].中国有色金属学报, 2002, 12(1):187-190. doi: 10.3321/j.issn:1004-0609.2002.01.037

    [58]

    Liu J, Wang Y, Luo D, et al. Use of ZnSO4, and SDD mixture as sphalerite depressant in copper flotation[J]. Minerals engineering, 2018, 121:31-38. doi: 10.1016/j.mineng.2018.03.003

  • 加载中

(2)

(1)

计量
  • 文章访问数:  1990
  • PDF下载数:  83
  • 施引文献:  0
出版历程
收稿日期:  2018-11-21
刊出日期:  2019-04-25

目录