-
摘要:
钢铁冶金过程产生大量的冶金尘泥,为研究冶金尘泥的组成特点和处置技术,论文分析了不同粉尘中的Fe、Ca和C等有价成分的组成特点和资源化利用技术。结果表明:冶金尘泥的利用方式和组成关系密切,一般来说和原料组成相差较小的冶金尘泥,其利用方式多以直接回工序利用为主,对于含杂质组成较多的冶金尘泥,直接回工序利用会导致杂质组成在冶炼过程中的循环富集,必须采用去杂质技术将尘泥中的杂质去除,可以结合杂质在尘泥中的物理化学特性,采用湿法冶金或火法冶金工艺进行杂质去除后再进行利用。
Abstract:The metallurgical process of iron and steel produces a large amount of metallurgical dust and mud. In order to study the composition characteristics and disposal technology of metallurgical dust, the composition characteristics and resource utilization technology of Fe, Ca and C valuable components in different dust were analyzed. The results show that the utilization mode and composition of metallurgical sludge are closely related. Generally speaking, the utilization mode of metallurgical sludge with small difference between raw material composition and raw material composition is mainly direct recycling process. For metallurgical sludge containing more impurities, direct recycling will lead to the cyclic enrichment of impurities in the smelting process. Impurity removal technology must be used to remove impurities in the sludge. Combined with the physical and chemical characteristics of impurities in the sludge, hydrometallurgical and pyrometallurgical processes can be used to remove impurities and reuse.
-
Key words:
- metallurgical dusts /
- composition /
- disposal /
- resource utilization
-
-
表 1 国内外烧结烟气污染物控制标准
Table 1. Control standards of sintering flue gas pollutants at home and abroad
Pollutants Australia Germany China Ordinary
limitsExceptional
limitsSO2 mg/m3 200 500 200 180 NOx mg/m3 100 400 300 300 PM mg/m3 10 20 50 40 Dioxins ng-TEQ/m3 0.1 0.1~0.4 0.5 0.5 表 2 国内外焦化烟气污染物控制标准
Table 2. Control standards for coking flue gas pollutants at home and abroad
Pollutants World Bank
(2001)Germany China Ordinary limits Exceptional limits Coke pushing PM mg/m3 20~50 5.0 50 30 SO2 mg/m3 500 350 50 30 Coke chimney PM mg/m3 20~50 10 30 15 SO2 mg/m3 500 250 50~200 40 NOx mg/m3 750 500 200~500 150 Dry quenching PM mg/m3 20~50 15 50 30 SO2 mg/m3 500 350 100 80 Facilities for burning gas PM mg/m3 20~50 20 30 15 SO2 mg/m3 500 350 50 40 NOx mg/m3 750 350 200 150 表 3 冶金尘泥的化学组成
Table 3. The composition of metallurgical dusts
Procedure Type Composition mass ratio/% TFe CaO C ZnO (Na+K)2O Sinter Dust removal in silo 23~30 28~31 2~5 Head dust removal 28~55 2~9 0.5~2.5 0~1.5 6~30 Tail dust removal 45~55 8~17 1~3 0.1~0.5 Ironmelting Dust removal in silo 54~56 6~9 1~3 Gravity dust removal 36~53 2~3 15~34 0.2~0.5 0.3~1.2 Gas ash 22~30 2~5 19~26 0.5~3 0.5~1.5 Gas sludge 33~45 2~7 18~23 0.5~3 0.5~1.5 Dust removal from iron yard 48~65 1~9 2~3 0.5~1.5 Steel-making Dust removal in silo 0.35 68.66 1.83 Converter dry dust Removal 59~64 12~17 1~2 Converter dust 54~61 14~18 2~3 Converter dust removal 36~51 13~16 3~4 -
[1] 刘百臣, 魏国, 沈峰满, 等.钢铁厂尘泥资源化管理与利用[J].材料与冶金学报, 2006(3):231-233. doi: 10.3969/j.issn.1671-6620.2006.03.017
[2] 潘旭方.冶金行业含铁尘泥合理循环利用技术[J].现代矿业.2010, 26(5):57-59. doi: 10.3969/j.issn.1674-6082.2010.05.017
[3] 王国鑫, 杨芸, 吴楠.探究钢铁企业烧结烟气综合治理技术[J].科技展望, 2016, 26(24):79. doi: 10.3969/j.issn.1672-8289.2016.24.071
[4] 赵丹.焦化工业场地有机污染土壤的化学氧化修复技术[D].武汉: 华中农业大学, 2010.
http://cdmd.cnki.com.cn/Article/CDMD-10504-1010010222.htm [5] 王常婕.浅谈煤化工环境污染分析与防治[J].生物化工, 2016, 2(2):59-60, 66. http://d.old.wanfangdata.com.cn/Periodical/swhg201602019
[6] 李肇毅.宝钢高炉的锌危害及其抑制[J].宝钢技术, 2002, (6):18-21. doi: 10.3969/j.issn.1008-0716.2002.06.005
[7] 陈克松, 李鹏飞.烧结机头烟尘达标排放的措施[J].冶金能源, 2009, 28(5):13-14. http://d.old.wanfangdata.com.cn/Periodical/yjny200905005
[8] Gunn D A.Theoretical evaluation of the stability of sialon-bonded silicon carbide in the blast furnace environment[J].Journal of european ceramic society, 1993, 11(1):35-41. doi: 10.1016/0955-2219(93)90056-W
[9] 佘雪峰, 薛庆国, 王静松, 等.钢铁厂含锌粉尘综合利用及相关处理工艺比较[J].炼铁, 2010, 29(4):56-62. doi: 10.3969/j.issn.1001-1471.2010.04.016
[10] 吴龙, 郝以党, 岳昌盛, 等.钢铁企业含铁尘泥资源化利用工艺及其选择[J].环境工程, 2016, 34(12):113-117. http://d.old.wanfangdata.com.cn/Periodical/hjgc201612023
[11] 毛瑞, 张建良, 刘征建, 等.钢铁流程含铁尘泥特性及其资源化[J].中南大学学报(自然科学版), 2015, 46(3):774-785. http://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD201503003.htm
[12] 郭秀键, 舒型武, 梁广, 等.钢铁企业含铁尘泥处理与利用工艺[J].环境工程, 2011, 29(2):96-98. doi: 10.3969/j.issn.1671-1556.2011.02.023
[13] 张汉泉, 汪凤玲.武钢高炉瓦斯泥铁回收工艺试验研究[J].矿产综合利用, 2011, 12(6):50-54. http://d.old.wanfangdata.com.cn/Periodical/kczhly201106009
[14] 于留春, 衣德强.从梅山高炉瓦斯泥中回收铁精矿的研究[J].金属矿山, 2003(10):65-68. doi: 10.3321/j.issn:1001-1250.2003.10.022
[15] 李霸宇.氧化铁-钢铁企业发展为磁性材料产业壮大提供支持[J].磁性材料及器件, 2005, 36(6):45-49. doi: 10.3969/j.issn.1001-3830.2005.06.013
[16] 石磊, 陈荣欢, 王如意.钢铁工业含锌尘泥的资源化利用现状与发展方向[J].中国资源综合利用, 2009, 27(2):19-22. doi: 10.3969/j.issn.1008-9500.2009.02.007
[17] Cui Peng, Zhancheng Guo, Fuli Zhang. Discovery of potassium chloride in the sintering dust by chemical and physical characterization[J]. ISIJ international, 2008, 48(10):1398-1403. doi: 10.2355/isijinternational.48.1398
[18] 裴滨, 詹光, 陈攀泽, 等.由铁矿烧结电除尘灰浸出液制备氯化钾及球形碳酸钙[J].过程工程学报, 2015, 15(1):137-146. http://d.old.wanfangdata.com.cn/Periodical/hgyj201501024
[19] 石磊, 陈荣欢, 王如意.钢铁工业含锌尘泥的资源化利用现状与发展方向[J].中国资源综合利用, 2009, 27(2):19-22. http://d.old.wanfangdata.com.cn/Periodical/zgzyzhly200902007
[20] 彭兵, 张传福, 彭及, 等.电弧炉粉尘的治理[J].矿产综合利用.2000(4):33-37. doi: 10.3969/j.issn.1000-6532.2000.04.010
[21] HILBER T, MARR R, SIEBENHOFER M, et al. Solid/liquid extraction of zinc from eaf-dust[J]. Separation science and technology, 2001, 36(5-6):1323-1333. doi: 10.1081/SS-100103652
[22] DUTRA A J B, PAIVA P R P, TAVARES L M. Alkaline leaching of zinc from electric arc furnace steel dust[J]. Minerals engineering, 2006, 19(5):478-485. doi: 10.1016/j.mineng.2005.08.013
[23] 周渝生, 郭玉华, 许海川, 等.我国转底炉工艺技术发展现状与前景浅析[J].攀枝花科技与信息, 2010, 35(4):11-15, 48. http://d.old.wanfangdata.com.cn/Conference/7383959
[24] 殷惠民.用转底炉法处理钢铁厂尘泥[J].江苏冶金, 2008, 36(6):6-7. doi: 10.3969/j.issn.1005-6068.2008.06.002
[25] 石国星.日照钢铁转底炉生产实践及发展展望.中国废钢铁, 2014(2):36-39. http://www.cnki.com.cn/Article/CJFDTotal-ZGFG201402007.htm
[26] 翁荣平, 马鞍山钢铁股份有限公司第三炼铁总厂, 马鞍山.马钢转底炉系统试生产过程的实践摸索[C]//中国金属学会, 2012.
[27] 何鹏, 许海川.日钢2×20万吨转底炉生产实践[J].环境工程, 2011, 29(S1):189-192. http://www.cnki.com.cn/Article/CJFDTotal-HJGC2011S1055.htm
-