Experimental Study on Spheroidization of a Graphite Flotation Concentrate
-
摘要:
粒度小于0.2 mm的中细粒天然石墨浮选精矿产品,直接应用的范围有限,价值低。但该粒级石墨可深加工成高纯球形石墨,将具有独特的物化性质及粒度特性,可作为电池材料、污水净化材料,其价值显著提高,而石墨球形化是生产高纯球形石墨的关键技术。对我国东北某地中细粒石墨浮选精矿进行了球形化试验研究,采用系列微粉气流磨进行了粗磨、细磨、整形条件试验,获得了适宜的加工参数,经5次粗磨8次细磨16次整形生产试验可获得产率52.73%、D50=15.99 μm、振实密度为1.06 g/cm3的高品质石墨球形化产品,该产品符合GBT-24533-2009中Ⅱ级改性天然石墨类锂离子电池负极材料对粒度及振实密度等要求。该工艺为类似石墨资源球形化提供了技术依据。
Abstract:Graphite flotation concentrate with particle size under -0.2 mm is worthless. However, after spheroidization and purification, the nature graphite could be widespread used as the battery material and wastewater purification material due to its unique physicochemical characteristics and particle feature. And then the value will be improved obviously. The graphite spheroidization technology is the key technology for the production. In this paper, the graphite flotation concentrate of the test sample is from Northeast China, and the particle size of the test sample is fine. The effects of spheroidization conditional parameters such as course grinding, fine grinding and shaping using series micropowder grinding equipments were studied. The results indicates that the best course grinding stage is 5, the best fine grinding stage is 8 and the best shaping stage is 16, and the spherical graphite product of D50=15.99 μm can be got with the tap density 1.06 g/cm3 and with the yield of 52.73%. It is according with the NG-Ⅱ technical standard of negative materials of lithium ion battery of natural graphite (GBT-24533-2009, China). The study provides technical basis for the graphite spheroidization of this kind of graphite resources.
-
Key words:
- graphite conccentrate /
- spherical /
- course grinding /
- fine grinding /
- shaping
-
-
表 1 原料(浮选精矿)粒度筛分分析结果
Table 1. Particle size screening result of the flotation graphite concentrate
粒度/mm 产率/% 固定碳品位/% 固定碳分布率/% +0.20 13.51 96.98 13.69 -0.20+0.15 18.46 96.11 18.54 -0.15+0.10 22.55 95.43 22.48 -0.10+0.075 14.00 95.09 13.91 -0.075+0.043 21.63 95.43 21.57 -0.043 9.85 95.34 9.81 合计 100.00 95.71 100.00 表 2 OMC激光粒度仪测试结果
Table 2. Particle size test result by OMC laser particle analyzer
粒度 D1 D10 D50 D90 D99 μm 6.09 23.10 69.21 148.37 227.36 表 3 粗磨次数试验结果
Table 3. Particle size test result of roughing grinding
粗磨次数 D10/μm D50/μm D90/μm 产率/% 1 16.80 48.37 80.92 94.52 2 16.35 35.53 69.40 92.64 3 16.11 28.54 49.98 90.40 4 15.68 25.51 41.21 88.93 5 14.38 21.44 32.59 87.15 6 14.21 17.63 27.59 85.42 7 13.98 13.28 25.91 83.16 表 4 细磨次数试验结果
Table 4. Particle size test result of fine grinding
粗磨次数 D10/μm D50/μm D90/μm 对原料产率/% 1 15.54 23.34 34.58 79.08 2 14.61 21.26 30.92 75.35 3 14.35 20.54 28.21 71.08 4 13.99 19.84 27.39 69.35 5 13.74 19.09 26.61 66.23 6 13.56 18.50 25.69 64.49 7 13.77 17.86 26.82 63.35 8 13.66 17.15 26.08 62.84 9 13.59 16.56 25.81 61.08 10 13.52 15.89 25.61 60.01 表 5 整形次数试验结果
Table 5. Particle size test result of shaping
整形
次数D10/μm D50/μm D90/μm 对原料
产率/%振实密度/(g·cm-3) 1 10.29 17.26 25.59 59.66 2 9.83 16.52 23.81 59.59 3 10.32 16.50 23.29 58.97 4 10.35 16.33 23.19 58.24 5 10.26 16.41 23.41 57.32 6 10.17 16.49 23.50 57.05 7 10.46 16.27 23.13 56.17 8 10.33 16.20 22.90 56.41 0.88 9 10.64 16.49 23.33 55.76 0.90 10 10.04 16.38 23.36 55.24 0.92 11 10.16 16.16 23.16 54.71 0.95 12 10.18 16.18 22.89 54.45 0.97 13 10.53 16.17 22.82 53.97 0.99 14 10.31 16.18 22.80 53.69 1.01 15 10.27 15.91 22.33 53.16 1.03 16 10.18 15.99 22.65 52.73 1.06 17 10.24 15.73 22.51 52.41 1.06 18 10.04 15.67 22.16 52.16 1.06 表 6 生产试验结果
Table 6. Production test result
产品 产率/% D10/μm D50/μm D90/μm 球形产品 52.73 10.18 15.99 22.65 中间料 7.28 6.87 11.48 15.85 尾料 39.99 3.54 6.95 9.59 -
[1] 孙传尧.选矿工程师手册:第四册[M].北京:冶金工业出版社, 2015.
[2] 《选矿手册》编辑委员会.选矿手册:第八卷(第五分册)[M].冶金工业出版社, 2008.
[3] 贺国帅, 陈代雄, 杨建文, 等.湖南鲁塘隐晶质石墨矿选矿试验研究[J].矿产保护与利用, 2018(5):57-61. http://kcbh.cbpt.cnki.net/WKD/WebPublication/paperDigest.aspx?paperID=4789f86a-2866-4796-b22e-a3eba01ada21
[4] 翁孝卿, 李洪强, 程润, 等.低品位隐晶质石墨浮选提纯试验研究[J].矿产综合利用, 2018(5):84-88. doi: 10.3969/j.issn.1000-6532.2018.05.018
[5] 马哲, 李建武, 安彤.中国石墨产业发展的机遇、问题与建议[J].矿产保护与利用, 2018(5):2-7, 13. http://kcbh.cbpt.cnki.net/WKD/WebPublication/paperDigest.aspx?paperID=2a509b57-3720-4e20-8886-6b0f85c11084
[6] 王红强, 熊义梅, 李庆余, 等.球形活性炭与球形石墨材料在非对称电容器中的应用[J].化工新型材料, 2012, 40(5):113-115. doi: 10.3969/j.issn.1006-3536.2012.05.038
[7] 《矿产资源综合利用手册》编辑委员会.矿产资源综合利用手册[M]北京:科学出版社, 2000.
[8] 杨青, 耿涌, 孙露, 等.天然石墨矿及球形石墨价值的能值核算[J].生态学杂志, 2017, 36(9):2592-2604. http://d.old.wanfangdata.com.cn/Periodical/stxzz201709027
[9] 杜轶伦, 张福良.我国石墨资源开发利用现状及供需分析[J].矿产保护与利用, 2017(6):109-116. http://kcbh.cbpt.cnki.net/WKD/WebPublication/paperDigest.aspx?paperID=72006a00-89bc-47a4-abb3-9a3ffdf82a2e
[10] 邓成才, 张凌燕, 何保罗, 等.湿法制备隐晶质球形石墨的研究[J].非金属矿, 2014, 37(2):19-21. doi: 10.3969/j.issn.1000-8098.2014.02.006
[11] 王靖, 高惠民, 焦玄, 等.吉林某隐晶质石墨球形化整形机提纯试验研究[J].硅酸盐通报, 2018, 37(10):3244-3247, 3255. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gsytb201810039
[12] 王明伟, 周通, 张广明, 等.水基石墨润滑剂制备及其应用[J].黑龙江科学, 2018, 9(1):52-54. doi: 10.3969/j.issn.1674-8646.2018.01.021
-