-
摘要:
随着全球科学技术的发展和能源经济的兴起,锂资源的开发和利用受到广泛关注。本文首先介绍锂资源分布,锂矿物的物化特性,然后重点综述了锂及锂化合物从富锂矿物中的提取技术,以及富锂矿物在锂离子电池材料和高性能复合材料方面的应用。总体而言,我国锂资源丰富,但利用率不高,不能满足国内需求,大部分的锂资源依赖于进口,亟需提高富锂矿物资源开采、提取以及综合利用水平,加快开发富锂矿物在新材料、新能源等方面的应用。
Abstract:With the development of global science and technology, the energy demand and consumption is sharply increased. The beneficiation and utilization of lithium riched mineral resources have received widespread attention. This review article provides the lithium resource distribution and its physical and chemical property, and discusses the progress made in its extraction method and the application of lithium-rich minerals in lithium-ion battery materials and high-performance composite materials. In summary, China's lithium resources are abundant, but the utilization level is low and can't satisfy the high-need demand. Most of high grade lithium resources depend on imports. It is urgent to develop advanced mining and extraction method and improve the comprehensive utilization level of lithium mineral resources. Furthermore, it is the key to probe new application of lithium mineral in advanced material, new energy and so on.
-
Key words:
- lithium-rich minerals /
- resource reserve /
- extraction process /
- advanced materials /
- new energy
-
-
图 1 α-锂辉石(a),β-锂辉石(b),γ-锂辉石(c)晶体结构[12]
Figure 1.
图 2 锂云母晶体结构[13]
Figure 2.
图 3 LiFePO4(OH)的晶体结构图[15]
Figure 3.
图 5 水热碱处理工艺流程[29]
Figure 5.
表 1 全球锂矿储量统计表[8]
Table 1. The statistical data of global lithium mineral reserves
国家 储量(以Li2O当量计)/万t 盐湖卤水型 伟晶岩型 沉积黏土型 智利 1 870.00 - - 玻利维亚 1 800.00 - - 中国 590.30 58.74 - 澳大利亚 - 403.86 - 阿根廷 333.96 - - 墨西哥 - - 182.40 美国 7.50 - 126.70 加拿大 - 98.36 - 马里 - 48.60 - 津巴布韦 - 35.10 - 捷克共和国 - 22.40 - 乌兹别克斯坦 - 12.00 - 奥地利 - 5.29 - 总计 5 595.21 资料来源:S & P Global Market Intelligence(截至2017年12月)。 -
[1] 王晨.试论全球锂矿资源分布与潜力分析[J].西部资源, 2018(1):7-8. http://d.old.wanfangdata.com.cn/Periodical/xbzy201801005
[2] 袁小晶, 马哲, 李建武.中国新能源汽车产业锂资源需求预测及建议[J].中国矿业, 2019, 28(8):61-65. http://d.old.wanfangdata.com.cn/Periodical/zgky201908012
[3] 杨卉芃, 柳林, 丁国峰.全球锂矿资源现状及发展趋势[J].矿产保护与利用, 2019, 39(6):26-40. http://kcbh.cbpt.cnki.net/WKD/WebPublication/paperDigest.aspx?paperID=f8716804-8b43-4b0f-8070-72884ef8cc74
[4] Meng F, McNeice J, Zadeh S S, et al. Review of lithium production and recovery from minerals, brines, and lithium-ion batteries[J].Mineral Processing and Extractive Metallurgy Review, 2019:1-19. Doi.org/10.1080/08827508.2019.1668387. doi: 10.1080/08827508.2019.1668387
[5] Cardoso-Fernandes J, Teodoro A C, Lima A. Remote sensing data in lithium (Li) exploration:A new approach for the detection of Li-bearing pegmatites[J]. International Journal of Applied Earth Observation and Geoinformation, 2019, 76:10-25. http://cn.bing.com/academic/profile?id=f49dbf94efde958a700b963a41f6cd5e&encoded=0&v=paper_preview&mkt=zh-cn
[6] Benson T R, Coble M A, Rytuba J J, et al. Lithium enrichment in intracontinental rhyolite magmas leads to Li deposits in caldera basins[J].Nature Communications, 2017, 8(1):270. http://cn.bing.com/academic/profile?id=1d5a1335518c115155a7b3f73c7e6efe&encoded=0&v=paper_preview&mkt=zh-cn
[7] 夏明, 贺彬.江西省宁都县三坑地区新发现磷锂铝石富锂矿物[J].世界有色金属, 2018(22):222-223. http://d.old.wanfangdata.com.cn/Periodical/sjysjs201822133
[8] 王秋舒, 元春华.全球锂矿供应形势及我国资源安全保障建议[J].中国矿业, 2019, 28(5):1-6. http://d.old.wanfangdata.com.cn/Periodical/zgky201905001
[9] 李云.某锂辉石矿浮选中组合捕收剂的试验研究及机理探讨[D].武汉: 武汉科技大学, 2019.
http://cdmd.cnki.com.cn/Article/CDMD-10488-1019056275.htm [10] 项华妹.锂辉石电子结构及其可浮性的量子化学研究[D].赣州: 江西理工大学, 2014.
http://cdmd.cnki.com.cn/Article/CDMD-10407-1015577773.htm [11] 胡成.太阳能热发电输热管道用堇青石-锂辉石复合陶瓷材料的研究[D].武汉: 武汉理工大学, 2017.
http://cdmd.cnki.com.cn/Article/CDMD-10497-1019809129.htm [12] Abdullah A A, Oskierski H C, Altarawneh M, et al. Phase transformation mechanism of spodumene during its calcination[J]. Minerals Engineering, 2019, 140:105833. http://cn.bing.com/academic/profile?id=f1a69e9b2853a762dc45c226f02db135&encoded=0&v=paper_preview&mkt=zh-cn
[13] 张慧婷.十二胺和油酸组合捕收剂在锂云母表面吸附的分子动力学模拟[D].赣州: 江西理工大学, 2017.
[14] Wang B, Tang M, Wu Y C, et al. A 2D layered natural ore as a novel solid-state electrolyte[J]. ACS Applied Energy Materials, 2019, 2(8):5909-5916. https://pubs.acs.org/doi/10.1021/acsaem.9b01046
[15] 黄斌.锂磷铝石型锂离子电池正极材料的制备及电化学性能研究[D].长沙: 中南大学, 2012.
http://www.wanfangdata.com.cn/details/detail.do?_type=degree&id=Y2198160 [16] Bogale T, Fidele M, Boris A, et al. The beneficiation of lithium minerals from hard rock ores:A review[J]. Minerals Engineering, 2019, 131:170-184. http://cn.bing.com/academic/profile?id=ebd47e98ddea787854b3157bf481429c&encoded=0&v=paper_preview&mkt=zh-cn
[17] 周园园.中国锂资源供需形势及对外依存度分析[J].资源与产业, 2019, 21(3):46-50. http://d.old.wanfangdata.com.cn/Periodical/zycy201903006
[18] Dessemond C, Lajoie-Leroux F, Soucy G, et al. Spodumene:The lithium market, resources and processes[J]. Minerals, 2019, 9(6):334. http://d.old.wanfangdata.com.cn/NSTLQK/NSTL_QKJJ0229987855/
[19] 苏慧, 朱兆武, 王丽娜, 等.矿石资源中锂的提取与回收研究进展[J].化工学报, 2019, 70(1):10-23. http://d.old.wanfangdata.com.cn/Periodical/hgxb201901002
[20] 朱一民, 谢瑞琦, 张猛.锂辉石浮选捕收剂及调整剂研究综述[J].金属矿山, 2019(2):15-21. http://d.old.wanfangdata.com.cn/Periodical/jsks201902005
[21] Wu H Q, Tian J, Xu L H, et al. Flotation and adsorption of a new mixed anionic/cationic collector in the spodumene-feldspar system[J]. Minerals Engineering, 2018, 127:42-47. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dcdfbe20448b7dbb253b1ff6eec6b019
[22] Zhu G L, Wang Y H, Wang X M, et al. States of coadsorption for oleate and dodecylamine at selected spodumene surfaces[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects, 2018, 558:313-321. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=d4a74d198944f479cfa5e8ce780824ad
[23] Tian M J, Gao Z Y, Khoso S A, et al. Understanding the activation mechanism of Pb2+ ion in benzohydroxamic acid flotation of spodumene:Experimental findings and DFT simulations[J]. Minerals Engineering, 2019, 143:106006.
[24] Song Y F, Zhao T Y, He L H, et al. A promising approach for directly extracting lithium from α-spodumene by alkaline digestion and precipitation as phosphate[J]. Hydrometallurgy, 2019, 189:105141.
[25] Salakjani N K, Singh P, Nikoloski A N. Production of lithium-A literature review part 1:Pretreatment of spodumene[J]. Mineral Processing and Extractive Metallurgy Review, 2019:1-14. http://cn.bing.com/academic/profile?id=35d909276b9f3f8fa65c65b22829c6f5&encoded=0&v=paper_preview&mkt=zh-cn
[26] Salakjani N K., Singh P, Nikoloski A N. Acid roasting of spodumene:Microwave vs. conventional heating[J]. Minerals Engineering, 2019, 138:161-167. http://cn.bing.com/academic/profile?id=ded9ca16fcb41c97a8b62492adb58c81&encoded=0&v=paper_preview&mkt=zh-cn
[27] Rosales G D, Resentera A C J, Gonzalez J A., et al. Efficient extraction of lithium from β-spodumene by direct roasting with NaF and leaching[J]. Chemical Engineering Research and Design, 2019, 150:320-326.
[28] Guo H, Yu H Z, Zhou A A, et al. Kinetics of leaching lithium from α-spodumene in enhanced acid treatment using HF/H2SO4 as medium[J]. Transactions of Nonferrous Metals Society of China, 2019, 29(2):407-415. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgysjsxb-e201902019
[29] Xing P, Wang C Y, Zeng L, et al. Lithium extraction and hydroxysodalite zeolite synthesis by hydrothermal conversion of α-spodumene[J]. ACS Sustainable Chemistry & Engineering, 2019, 7(10):9498-9505.
[30] 何明明.锂云母机械化学活化提锂工艺研究[D].北京: 中国科学院大学(中国科学院过程工程研究所), 2018.
http://cdmd.cnki.com.cn/Article/CDMD-80041-1018104138.htm [31] Setoudeh N, Nosrati A, Welham N J. Lithium recovery from mechanically activated mixtures of lepidolite and sodium sulfate[J]. Mineral Processing and Extractive Metallurgy, 2019:1-8. Doi.org/10.1080/25726641.2019.1649112 doi: 10.1080/25726641.2019.1649112
[32] Su H, Ju J Y, Zhang J, et al. Lithium recovery from lepidolite roasted with potassium compounds[J]. Minerals Engineering, 2020(145):106087. http://cn.bing.com/academic/profile?id=9ebbee673aaa8676e0143e7cabeb10aa&encoded=0&v=paper_preview&mkt=zh-cn
[33] Zhang X F, Tan X M, Li C, et al. Energy-efficient and simultaneous extraction of lithium, rubidium and cesium from lepidolite concentrate via sulfuric acid baking and waterleaching[J]. Hydrometallurgy, 2019, 185:244-249.
[34] Liu J L, Yin Z L, Li X H, et al. A novel process for the selective precipitation of valuable metals from lepidolite[J]. Minerals Engineering, 2019(135):29-36. http://cn.bing.com/academic/profile?id=975309e4c63a30b08bcdc56782ae253a&encoded=0&v=paper_preview&mkt=zh-cn
[35] Liu J L, Yin Z L, Li X H, et al. Recovery of valuable metals from lepidolite by atmosphere leaching and kinetics on dissolution of lithium[J].Transactions of Nonferrous Metals Society of China, 2019, 29(3):641-649. http://d.old.wanfangdata.com.cn/Periodical/zgysjsxb-e201903022
[36] Guo H, Kuang G, Wan H, et al. Enhanced acid treatment to extract lithium from lepidolite with a fluorine-based chemical method[J]. Hydrometallurgy, 2019, 183:9-19. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=0ace1b9bfc26e7968e33821342a81eb3
[37] Li J, Kong J, Zhu Q S, et al. In-situ capturing of fluorine with CaO for accelerated defluorination roasting of lepidolite in a fluidized bed reactor[J]. Powder Technology, 2019, 353:498-504. http://cn.bing.com/academic/profile?id=df780847b3d3a3ebd9ac5f35e93f0c93&encoded=0&v=paper_preview&mkt=zh-cn
[38] Johnson G D, Urbani M D, Vines N J. Lithium recovery from phosphate minerals: U.S. Patent Application 15/999, 094[P]. 2019-6-20.
[39] 劳新斌, 徐笑阳, 江伟辉, 等.Li2CO3添加量对锂辉石-莫来石复相陶瓷材料性能的影响[J].中国陶瓷, 2018, 54(11):16-22. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgtc201811003
[40] Wu J F, Hu C, Ping C, et al. Preparation and corrosion resistance of cordierite-spodumene composite ceramics using zircon as a modifying agent[J]. Ceramics International, 2018, 44(16):19590-19596. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=6ee334b3ae6660f1ed9b788fc1ec6d81
[41] Hu C, Wu J F, Xu X H, et al. Investigating the effect of andalusite on mechanical strength and thermal shock resistance of cordierite-spodumene composite ceramics[J]. Ceramics International, 2018, 44(3):3240-3247. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=e6e49115ec73fa6e5817378d3adec2de
[42] Wang F L, Chen X Y, Zhang W J, et al. Synthesis and characterization of borosilicate glass/β-spodumene/Al2O3 composites with low CTE value for LTCC applications[J]. Journal of Materials Science:Materials in Electronics, 2018, 29(11):9038-9044. http://link.springer.com/10.1007/s10854-018-8929-z
-