Adsorption of Fluoride by Natural Aluminosilicate Minerals
-
摘要:
含氟工业废水对环境和人体具有较大的危害,以三种天然铝硅酸盐矿物一水硬铝石、三水铝石以及高岭石为吸附剂,探究其对氟离子吸附的可行性并对除氟的机理进行探讨。单因素条件试验表明,高岭石对氟离子的吸附效率最高。在高岭石粒度-18 μm、用量10 g/L、pH=1.5、反应时间t=10 min、反应温度25 ℃的最佳反应条件下,氟离子去除率可达83.69%,废水中氟离子浓度由150 mg/L降低至24.47 mg/L。动力学拟合结果表明,高岭石对氟离子的去除符合准二级动力学,理论吸附容量Qe=8.0244 mg/g。吸附等温线研究表明,该反应符合Freundlich模型,属于单层吸附。FTIR、XPS等检测结果表明高岭石中的羟基脱离后与氟离子发生离子交换,并在高岭石表面生成Al-F键,从而实现含氟废水的净化。
Abstract:The fluorine-containing wastewater discharged from industrial production has great harm to the environment and human body. In this study, three kinds of natural aluminosilicate minerals, diaspore, gibbsite and kaolinite, are used as adsorbents to explore the feasibility of their adsorption of fluorine ions and the mechanism of defluorination. The single factor condition test showed that kaolinite had the best adsorption efficiency for fluoride ion. The removal rate of fluoride ion can reach 82.44% and the concentration of fluoride ion can be reduced from 150 mg/L to 26.34 mg/L under the optimum reaction conditions of granularity of Kaolinite -18 μm, dosage of 10 g/L, pH = 13, reaction time = 10 min and reaction temperature 25 ℃. Kinetic fitting showed that the removal of fluoride ion by kaolinite accorded with quasi-second-order kinetics with theoretical capacity value Qe=8.0244 mg/g. The adsorption isotherms show that the reaction conforms to Freundlich model and belongs to single layer adsorption. XPS analysis shows that fluoride ion exchanges with hydroxyl groups in kaolinite, and Al-F bonds are formed on the surface of kaolinite, thus achieving the purification of fluoride-containing wastewater.
-
-
表 1 天然高岭石的矿物含量
Table 1. Mineral contents of natural kaolinite
Mineral species Kaolinite Quartz Diaspore Gibbsite content (%) 81.45 16.71 1.26 0.58 表 2 吸附动力学模型相关参数
Table 2. Relevant parameters of adsorption kinetic model
Kinetic equation Temperature Parameter Equation Qe k R2 Pseudo-first order 25 ℃ 1.1618 0.1183 0.9038 log(Qe-Qt)=0.0651-0.1183t Pseudo-second-order 25 ℃ 8.0244 8.045 0.9999 $\frac{t}{{{Q_t}}}$ =0.124 6t+0.01549表 3 天然吸附材料对氟离子的吸附容量比较/(mg·g-1)
Table 3. Comparison of adsorption capacity of natural adsorption materials for fluorine ions
Activated alumina zeolite Animal charcoal Lignite Bentonite Rectorite 1.2-4.5 0.78 0.95-3 0.12 0.25 1.0-1.75 表 4 Langmuir、Freundlich吸附等温线拟合吸附过程的回归参数
Table 4. Langmuir and Freundlich adsorption isotherms fitting regression parameters of adsorption
Adsorption model Temperature Parameter Equation n K R2 Langmuir 25 ℃ 16.5098 0.0719 0.9518 $\frac{{{C_e}}}{{{Q_e}}}$ =0.8419Ce+0.0606Freundlich 25 ℃ 2.2738 0.4094 0.9688 logQe=0.4398logCe-0.4094 表 5 天然高岭石及除氟后表面原子含量
Table 5. Atomic content on the surface of natural kaolinite and defluorinated residue
Mineral species Atomic content of elements (%) Al Si F Natural kaolinite 13.48 15.49 0 After fluoride adsorption 13.17 16.09 0.76 -
[1] 张强国, 谢果.氟危害及重庆氟污染的对策[J].重庆科技学院学报, 2005(4):17-19. http://d.old.wanfangdata.com.cn/Periodical/cqsygdzkxxxb200504006
[2] 雷绍民, 郭振华.氟污染的危害及含氟废水处理技术研究进展[J].金属矿山, 2012, 41(4):152-155. doi: 10.3969/j.issn.1001-1250.2012.04.039
[3] 戴东情, 张秀, 李海敏.湿法炼锌中氟氯来源及控制研究[J].江苏科技信息, 2018, 35(2):39-41. doi: 10.3969/j.issn.1004-7530.2018.02.013
[4] Zuo H, Chen L, Kong M, et al. Toxic effects of fluoride on organisms[J]. Life Sciences, 2018, 198:18-24. doi: 10.1016/j.lfs.2018.02.001
[5] Gogoi S, Nath S K, Bordoloi S, et al. Fluoride removal from groundwater by limestone treatment in presence of phosphoric acid.[J]. Journal of Environmental Management, 2015, 152:132-139. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=efa7519a75585bdd69024c23e5403cc5
[6] 反渗透除氟预处理技术的试验研究[D].泰安: 山东农业大学, 2012.
[7] D Alessandro W, Bellomo S, Parello F. Fluorine adsorption by volcanic soils at Mt. Etna, Italy[J]. Applied Geochemistry, 2012, 27(6):1179-1188. https://www.sciencedirect.com/science/article/pii/S0883292712000674
[8] 姜英杰.混凝沉淀法除氟技术的新进展[C].北京: 中国土木工程学会水工业分会给水深度处理研究会年会, 2012.
[9] 李华, 孔令东.改性阳离子交换树脂的制备及其除氟性能研究[J].中北大学学报(自然科学版), 2008, 29(4):352-355. doi: 10.3969/j.issn.1673-3193.2008.04.013
[10] E á, Giménez A, Ballesteros J C. Fluoride accumulation by plants grown in acid soils amended with flue gas desulphurisation gypsum[J]. Journal of Hazardous Materials, 2011, 192(3):1659-1666. doi: 10.1016/j.jhazmat.2011.06.084
[11] Tian D, Wang L, Ding R. The study on fluorine removal of drinking water by modified activated carbon[J]. Petrochemical Industry Application, 2011.
[12] 苏馈足, 徐得潜, 唐德江, 等.天然铝土矿物除氟剂吸附性能研究[J].合肥工业大学学报(自然科学版), 2009, 32(7):1042-1045. doi: 10.3969/j.issn.1003-5060.2009.07.023
[13] 陆薇宇, 罗海燕, 许霞.广西百色铝土矿工艺矿物学研究[J].矿产综合利用, 2014(2):57-61. http://d.old.wanfangdata.com.cn/Periodical/kczhly201402013
[14] 易龙生, 黎七荣, 齐莉娜, 等.宁乡某高岭土的工艺矿物学研究[J].矿产综合利用, 2016(2):78-80. doi: 10.3969/j.issn.1000-6532.2016.02.018
[15] 蒋明琴, 金晓英, 王清萍, 等.天然高岭土对Pb~(2+), Cd~(2+), Ni~(2+), Cu~(2+)的吸附及解吸性能研究[J].福建师范大学学报(自然科学版), 2009, 25(2):55-59. http://d.wanfangdata.com.cn/Periodical/fjsfdxxb200902013
[16] 徐玉芬.黏土矿物对废水中Cu~(2+)、Cd~(2+)、Cr~(3+)的吸附试验研究[J].矿产综合利用, 2008(3):28-31. doi: 10.3969/j.issn.1000-6532.2008.03.008
[17] 程运, 王昕晔, 吕文婷, 等.高岭土高温吸附重金属和碱金属的研究进展[J].化工进展, 2019, 38(8):3852-3865. http://d.old.wanfangdata.com.cn/Periodical/hgjz201908042
[18] 董菊芬, 董丙坤.生活饮用水中氟离子含量测定[J].河北化工, 2010, 33(3):60-61. doi: 10.3969/j.issn.1003-5059.2010.03.026
[19] 苏馈足, 徐得潜, 唐德江, 等.天然铝土矿物除氟剂吸附性能研究[J].合肥工业大学学报(自然科学版), 2009, 32(7):1042-1045. doi: 10.3969/j.issn.1003-5060.2009.07.023
[20] 印万忠, 韩跃新, 魏新超, 等.一水硬铝石和高岭石可浮性的晶体化学分析[J].金属矿山, 2001(6):29-33. http://d.old.wanfangdata.com.cn/Periodical/jsks200106009
[21] Srivastava P, Singh B, Angove M. Competitive adsorption behavior of heavy metals on kaolinite.[J]. Journal of Colloid & Interface Science, 2005, 290(1):28-38. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=0a3daf840334d3a60387719aaf635d52
[22] 陈湘清, 胡岳华, 王毓华.氟化钠在铝硅酸盐矿物浮选中的作用机理研究[J].金属矿山, 2004(10):32-35. doi: 10.3321/j.issn:1001-1250.2004.10.010
[23] 王洪涛.高岭石胶体的降氟作用机理[J].南京大学学报(自然科学), 2002, 38(6):855-859. http://d.old.wanfangdata.com.cn/Periodical/njdxxb200206017
[24] 赵杏媛, 张有瑜.黏土矿物与黏土矿物分析[M].北京:海洋出版社, 1990:109-115.
[25] 于涛, 郭风林.三元复合驱结垢机理研究——NaOH对高岭石和蒙脱石的作用[J].东北石油大学学报, 2001, 25(2):28-30. doi: 10.3969/j.issn.2095-4107.2001.02.009
[26] 狄平宽, 单忠健.Ca~(2+)、Al~(3+)对聚丙烯酰胺在高岭土絮凝过程中作用的影响[J].环境科学, 1991(6):20-448. http://www.cnki.com.cn/Article/CJFDTotal-HJKZ199106004.htm
[27] 朱迟.藻类生物絮凝剂和饮用水除氟生物吸附剂的研究[D].武汉: 华中师范大学, 2007.
http://d.wanfangdata.com.cn/Thesis_Y1809703.aspx [28] 苏馈足, 徐得潜, 李洋, 等.铝土矿除氟吸附剂制备及其性能研究[J].工业用水与废水, 2008, 39(6):78-81. doi: 10.3969/j.issn.1009-2455.2008.06.021
[29] Ghorai S, Pant K K. Equilibrium, kinetics and breakthrough studies for adsorption of fluoride on activated alumina[J]. Separation & Purification Technology, 2005, 42(3):265-271. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=3394a14e7d23fb45a31bc7f1f06594ca
[30] 孙伟, 刘文莉, 胡岳华.聚丙烯酰胺与高岭石相互作用的FTIR研究[C].长沙: 全国选矿专业学术年会, 2006.
[31] 方燕.研磨及酸化高岭石的晶体结构及其对Cu~(2+)的表界面作用[D].广州: 中国科学院广州地球化学研究所, 2017.
http://cdmd.cnki.com.cn/Article/CDMD-80165-1017074626.htm [32] 牛继南, 强颖怀, 王志辉.氟置换高岭石层间羟基的能量最小化模拟[J].物理化学学报, 2010, 26(6):1541-1551. doi: 10.3866/PKU.WHXB20100515
[33] Zhang N, Ejtemaei M, Nguyen A V, et al. XPS analysis of the surface chemistry of sulfuric acid-treated kaolinite and diaspore minerals with flotation reagents[J]. Minerals Engineering, 2019, 136. https://www.sciencedirect.com/science/article/pii/S0892687519301141
[34] Coulombe M, Lebeuf M, Fairley N, et al. Cryolitic vein XPS imaging from an industrial grade carbon[J]. Journal of Electron Spectroscopy & Related Phenomena, 2012, 185(12):588-597. http://d.old.wanfangdata.com.cn/NSTLQK/NSTL_QKJJ0229584945/
-