Adsorption of Heavy Metals on Silica Gel Loaded with Manganese Dioxide
-
摘要:
该文以原位合成法制得S-MnO2吸附剂,并采用XRD、FT-IR、SEM、BET/BJH等方法进行表征。考察了吸附反应时间、吸附剂用量、水浴温度、反应溶液酸碱度对S-MnO2吸附重金属离子的影响。结果表明,S-MnO2的吸附效果良好,去除率近100%,尤其是Cu2+、Pb2+、Zn2+等重金属离子都达到了饮用水标准。As5+在5 min内即可达到吸附平衡且S-MnO2几乎不受溶液酸碱度的影响,可在大范围pH(2~10)条件下使用。该材料成本低、效率高、使用范围广、固液分离快、无二次污染,在未来的矿山废水处理领域中有着广泛的应用前景。
Abstract:S-MnO2 adsorbent was synthesized by in-situ method and characterized by XRD, FT-IR, SEM, and BET/BJH. The effects of reaction time, amount of adsorbent, temperature and pH of solution on the adsorption performance of S-MnO2 were investigated. The results showed that S-MnO2 with excellent adsorption capacity, the removal efficiency was close to 100%, especially Cu2+, Pb2+, Zn2+, etc, which reached the drinking water standard. It could reach the adsorption equilibrium within 5min for the adsorption of As5+, and S-MnO2 was hardly affected by the pH of the solution, which could be used in a wide range of pH (2—10). The material has low cost, high efficiency, widely apply, easy to solid-liquid separation and no secondary pollution. S-MnO2 could be used as a promising adsorbent for the treatment of mine wastewater in the future.
-
Key words:
- mine wastewater /
- heavy metal ions /
- manganese dioxide /
- silica gel /
- adsorption
-
-
表 1 不同类型MnO2吸附材料比表面积的比较
Table 1. Comparison of specific surface areas of different types of MnO2 adsorption materials
Adsorbents Specific surface area (m2/g) S-MnO2 334.6 MnO2/CNT 102.92 MnO2 117 FMBO 261 表 2 S-MnO2对重金属的吸附效果
Table 2. Adsorption capacity of S-MnO2 on heavy metals
Heavy metal ions As5+ Cu2+ Pb2+ Zn2+ Ni2+ Co2+ Cd2+ Sb3+ Removal efficiency /% 97.75 100.00 99.99 98.33 96.63 99.45 98.95 95.60 Adsorption minimum /(mg·L-1) 0.04 0 0 0.01 0.2 0.2 0.3 0.1 Limit of drinking water standard /(mg·L-1) 0.01 1 0.01 1 0.02 0.005 0.005 0.01 -
[1] 严群, 黄俊文, 唐美香, 等.矿山废水的危害及治理技术研究进展[J].金属矿山, 2010(8):183-186. http://d.old.wanfangdata.com.cn/Periodical/jsks201008047
[2] 徐师, 张大超, 吴梦, 等.硫酸盐还原菌在处理酸性矿山废水中的应用[J].有色金属科学与工程, 2018, 9(1):92-97. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=jxysjs201801016
[3] 白润才, 李彬, 李三川, 刘光伟.矿山酸性废水处理技术现状及进展[J].长江科学院院报, 2015, 32(2):14-19. http://d.old.wanfangdata.com.cn/Periodical/cjkxyyb201502004
[4] Seval Kutlu Akal Solmaz, Gökhan Ekrem üstün, Aşkın Birgül, et al. Treatability studies with chemical precipitation and ion exchange for an organized industrial district (OID) effluent in Bursa, Turkey[J]. Desalination, 2007, 217(1-3):301-312. doi: 10.1016/j.desal.2007.04.053
[5] 杨瑞香.水体重金属污染来源及治理技术研究进展[J].资源节约与环保, 2016(4):66. doi: 10.3969/j.issn.1673-2251.2016.04.055
[6] 陈玉洁, 韩凤兰, 罗钊.镁渣固化/稳定污酸渣中重金属铜和镉[J].无机盐工业, 2015, 47(7):48-51. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=wjygy201507014
[7] 张超智, 张骁, 孙晓飞, 等.分子筛去除水体中重金属离子的应用进展[J].化工新型材料, 2015, 43(8):22-24. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hgxxcl201508008
[8] Xiaoliu Huangfu, Chengxue Ma, Jun Ma, et al. Significantly improving trace thallium removal from surface waters during coagulation enhanced by nanosized manganese dioxide[J]. Chemosphere, 2017, 168:264-271. doi: 10.1016/j.chemosphere.2016.10.054
[9] 黄一帆, 于志红, 廉菲, 等.纳米二氧化锰对水中Cu2+和Cd2+的吸附特性[J].环境工程技术学报, 2016, 6(4):350-356. doi: 10.3969/j.issn.1674-991X.2016.04.052
[10] 刘云.多壁碳纳米管/铁氧化物复合材料的制备和应用研究[D].开封: 河南大学, 2011.
http://d.wanfangdata.com.cn/Thesis/D146169 [11] Le Zeng. A method for preparing silica-containing iron(Ⅲ) oxide adsorbents for arsenic removal[J]. Water Research, 2003, 37(18):4351-4368. doi: 10.1016/S0043-1354(03)00402-0
[12] Zhang Yanqing, Li Meng, Zhang Qian. Silicon-modified ferric hydroxide for catalytic ozonation of nitrobenzene in aqueous solution[J]. Desalination and Water Treatment, 2015, 54(10):2902-2908. doi: 10.1080/19443994.2014.905979
[13] Yang B, Gong Q, Zhao L, et al. Preconcentration and determination of lead and cadmium in water samples with a MnO2 coated carbon nanotubes by using ETAAS[J]. Desalination, 2011, 278(1-3):65-69. doi: 10.1016/j.desal.2011.05.010
[14] Al-Nidawi, Ali J A, Matori K A, et al. Effect of MnO2, doped on physical, structure and optical properties of zinc silicate glasses from waste rice husk ash[J]. Results in Physics, 2017, 7:955-961. doi: 10.1016/j.rinp.2017.02.020
[15] Dessai R R, Desa J A E, Sen D, et al. Effects of pressure and temperature on pore structure of ceramic synthesized from rice husk:A small angle neutron scattering investigation[J]. Journal of Alloys and Compounds, 2013, 564(26):125-129. http://www.sciencedirect.com/science/article/pii/S0925838813004325
[16] Wei X U, Lan H, Wang H, et al. Comparing the adsorption behaviors of Cd, Cu and Pb from water onto Fe-Mn binary oxide, MnO2 and FeOOH[J]. Frontiers of Environmental Science & Eng, 2015, 9(3):385-393. http://link.springer.com/article/10.1007/s11783-014-0648-y
[17] 曾超, 俞亭超, 王晓卉, 等.二氧化锰改性多壁碳纳米管吸附水中Sb(Ⅲ)[J].浙江大学学报(工学版), 2013, 47(11):1951-1957, 1964. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zjdxxb-gx201311010
[18] Dabrowski A, Hubicki Z, Podkoscielny P, et al. Selective removal of the heavy metal ions from waters and industrial wastewaters by ion-exchange method[J]. Chemosphere, 2004, 56(2):91-106. doi: 10.1016/j.chemosphere.2004.03.006
[19] Escudero C, Núria Fiol, Villaescusa I, et al. Arsenic removal by a waste metal (hydr)oxide entrapped into calcium alginate beads[J]. Journal of Hazardous Materials, 2009, 164(2-3):533-541. doi: 10.1016/j.jhazmat.2008.08.042
[20] Véronique Lenoble, Laclautre C, Serpaud B, et al. As(Ⅴ) retention and As(Ⅲ) simultaneous oxidation and removal on a MnO2-loaded polystyrene resin[J]. Science of the Total Environment, 2004, 326(1-3):197-207. doi: 10.1016/j.scitotenv.2003.12.012
[21] 宋嘉慧, 皇甫小留, 何强, 等. δ-MnO2对重金属Ti(Ⅰ)的吸附效能及影响因素[J].中国给水排水, 2019(9):53-57. http://www.cqvip.com/QK/95430X/20199/7002206874.html
[22] Virender K. Sharma, Mary Sohn. Aquatic arsenic:Toxicity, speciation, transformations and remediation[J]. Environment International, 2009, 35(4):743-759. doi: 10.1016/j.envint.2009.01.005
-