-
摘要:
选矿废水富含大量酸/碱溶液、固体悬浮物、重金属及浮选药剂残留物等组分,已成为矿山环境、水体及土壤污染的主要成因。为了推动矿山废水的治理和水资源回用效率,本文简要介绍选矿废水的来源和危害;详细介绍了矿山废水的处理方法,如酸碱中和法、混凝沉降法、氧化法、吸附法、沉淀法等典型废水治理技术;而废水处理方面的新技术应用也进行了归纳,如人工湿地法、微生物处理法、膜分离法、电化学法和复合废水处理技术。最后,阐述了选矿废水处理技术的应用现状,并对选矿废水治理技术的研究和开发进行了展望。
Abstract:Mineral processing wastewater is rich in acid / alkali solution, solid suspension, heavy metal and flotation reagent residue, which has become the main cause of mine environment, water and soil pollution. In order to promote the treatment of mine wastewater and the reuse efficiency of water resources, This paper introduces the source and harm of mine wastewater briefly, and the treatment methods of mine wastewater is introduced in detail, such as acid-base neutralization method, coagulation sedimentation method, oxidation method, adsorption method, sedimentation method and other typical wastewater treatment technologies. Meanwhile, the application of new technologies in wastewater treatment is summarized, such as artificial wetland method, microbial treatment method, membrane separation method, electrochemical method and composite wastewater treatment technology. Finally, the application status of the treatment technology of mineral processing wastewater is described, and the research and development of the treatment technology of mineral processing wastewater are prospected.
-
Key words:
- mine wastewater /
- treatment technology /
- application status /
- prospect
-
-
表 1 深度氧化技术的原理、优势和存在问题
Table 1. Principle, advantage and existing problems of deep oxidation technology
分类 原理 优势 存在问题 臭氧-复合氧化技术 利用O3本身强氧化性或水中催化剂作用下生成强氧化性·HO2、·O2-、·OH自由基来氧化有机污染物 设备占地小、降解速度快、无二次污染、处理效率高、应用范围广 依赖催化剂的吸附性能与催化剂生产成本 Fenton氧化技术 利用Fe2+和H2O2为催化剂和氧化剂产生的链反应生成·OH,氧化有毒和难降解有机化合物,生成小分子物质、CO2和H2O的技术 应用广泛、氧化速率快 该方法仅局限于酸性环境,且化学试剂(如酸、H2O2)用量大,过量Fe2+会形成二次污染 光化学氧化技术 紫外光照下将氧化剂(H2O2、ClO2等)分解为强氧化性的·OH,将有机选矿药剂降解为小分子有机物、CO2和H2O的技术。 设备简单、操作方便、无二次污染 光能利用率低 光催化氧化技术 半导体光催化剂吸收≥禁带宽度光能时,电子会跃迁到导带,而价带空穴将OH-和H2O氧化成强氧化性·OH;电子与O2生成·O2-;二者可将有机物氧化成CO2、H2O和小分子有机物 设备简单、操作方便、反应温和、无污染、催化剂可循环利用 光催化材料普遍效能较低、光能利用率低、光催化氧化需与其他工艺相结合使用 电催化氧化技术 外加电场下,利用电化学反应器内发生物理、化学及电化学反应实现有机物的降解的方法 反应温和、设备投资小、占地小、避免二次污染、处理效率高 电场能耗高,成本大。需注重开发稳定、高效、廉价反应器,降低运行成本 过硫酸盐氧化技术 在加热、紫外光照、过渡金属或活性炭存在下,可将S2O82-激活成·SO4-;利用其强氧化性将有机物降解为CO2、H2O及小分子有机物 分解速率高、氧化效果好、易存储、工艺操作简单、成本低 产生自由基·SO4-能耗高 -
[1] 冯章标, 何发钰, 邱廷省, 选矿废水治理与循环利用技术现状及展望[J].金属矿山, 2016, (7):71-77. http://d.old.wanfangdata.com.cn/Periodical/jsks201607011
[2] 马尧, 胡宝群, 孙占学, 矿山废水处理的研究综述[J].铀矿冶, 2016, 25(4):199-203. http://d.old.wanfangdata.com.cn/Periodical/yky200604008
[3] 罗良德, 特大型露采铜矿酸碱废水中和处理实践[J].采矿技术, 2004, 4(2):84-85. http://d.old.wanfangdata.com.cn/Periodical/caikjs200402040
[4] 邱卫芬, 张德文, 絮凝沉降法降低某铅锌选矿尾水中固体悬浮物试验[J].现代矿业, 2015(3):81-82. http://d.old.wanfangdata.com.cn/Periodical/xdky201503027
[5] 张学洪, 陈志强, 张颖, 等.混凝沉淀法处理钨矿选矿废水生产实践研究[J].吉林化工学院学报, 2000, 17(3):38-40. http://d.old.wanfangdata.com.cn/Periodical/jlhgxyxb200003013
[6] 欧阳魁.臭氧法处理硫化矿选矿废水的新工艺及其机理研究[D]长沙: 中南大学, 2009.
[7] 林小凤, 傅平丰, 邹凤羽, 等.高级氧化技术降解有机选矿药剂的研究进展[J].金属矿山, 2019(9):1-7. http://d.old.wanfangdata.com.cn/Periodical/jsks201909001
[8] Beltran-Heredia J, Torregrosa J, Dominguez J R, et al. Kinetics of the reaction between ozone and phenolic acids present in agro-industrial wastewaters[J]. Water Research, 2001(4):1077-1085. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=54c21605ac87eb107b95bf02fde92f90
[9] Yan P, Chen G, Ye M, et al. Oxidation of potassium n-butyl xanthate with ozone:Products and pathways[J]. Journal of Cleaner Production, 2016, 139:287-294. http://cn.bing.com/academic/profile?id=fe628f4edbbc750baf5f12a456d6a590&encoded=0&v=paper_preview&mkt=zh-cn
[10] Lee B H, Song W C, Manna B, et al. Dissolved ozone flotation(DOF)-a promising technology in municipal wastewater treatment[J]. Desalination, 2008(1/2/3):260-273. http://cn.bing.com/academic/profile?id=b0bc5802a1fc442b0088d7465479e720&encoded=0&v=paper_preview&mkt=zh-cn
[11] Fu P, Feng J, Yang T, et al. Comparison of alkyl xanthates degradation in aqueous solution by the O3 and UV/O3 processes:Efficiency, mineralization and ozone utilization[J]. Minerals Engineering, 2015, 81:128-134. doi: 10.1016/j.mineng.2015.08.001
[12] Fu P, Feng J, Yang H, et al. Degradation of sodium n-butyl xanthate by vacuum UV- ozone(VUV/O3)in comparison with ozone and VUV photolysis[J]. Process Safety and Environmental Protection, 2016, 102:64-70. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=1fe9cb423b05cfa926c7b981c693155d
[13] Bach A, Shemer H, Semiat R. Kinetics of phenol mineralization by Fenton-like oxidation[J]. Desalination, 2010(3):188-192. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=416349d32a030192a017d10537b12614
[14] Wang X, Liu W, Duan H, et al. Degradation mechanism study of amine collectors in fenton process by quantitative structure-activity relationship analysis[J]. Physicochemical Problems of Mineral Processing, 2018(3):713-721. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=9b9a104b78ca9fa903fed196354cdc0b
[15] Chen S, Du Dong-yun. Degradation of n-butyl xanthate using fly ash as heterogeneous fenton-like catalyst[J]. Journal of Central South University, 2014(4):1448-1452. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zngydxxb-e201404026
[16] Mahiroglu A, Tarlan-Yel E, Sevimli M F. Treatment of combined acid mine drainage(AMD)-Flotation circuit effluents from copper mine via Fenton's process[J]. Journal of Hazardous Materials, 2009(2/3):782-787. http://cn.bing.com/academic/profile?id=b22092977744add4c9ca539b2b2f5a04&encoded=0&v=paper_preview&mkt=zh-cn
[17] Asghar A, Raman A A A, Daud W M A W. Advanced oxidation processes for in-situ production of hydrogen peroxide/hydroxyl radical for textile wastewater treatment:a review[J]. Journal of Cleaner Production, 2015, 87:826-838. http://cn.bing.com/academic/profile?id=3b4db9896493219788b95f91fb35d1d1&encoded=0&v=paper_preview&mkt=zh-cn
[18] Cheng Min, Zeng Guangming, Huang Danlian, et al. Hydroxyl radicals based advanced oxidation processes (AOPs) for remediation of soils contaminated with organic compounds:A review[J]. Chemical Engineering Journal, 2016, 284:582-598. http://cn.bing.com/academic/profile?id=7c2e62c1f7b59a233d24923db065c061&encoded=0&v=paper_preview&mkt=zh-cn
[19] Qi Xiao, Ouyang Linli. Photocatalytic photodegradation of xanthate over C, N, S-tridoped TiO2 nanotubes under visible light irradiation[J]. Journal of Physics and Chemistry of Solids, 2011, 72:39-44. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=1e9f49fb40bca41e9df310d201c6145e
[20] Xin W, Qian D. Research progress in electrochemical oxidation coupling processes for organic wastewater treatment[J]. Industrial water Treatment, 2013, 33(11):8-12. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gyscl201311003
[21] 程松, 陈晔, 安超凡.石墨毡作为粒子电极处理含酚废水的试验研究[J].工业用水与废水, 2017, 48(5):19-24. http://d.old.wanfangdata.com.cn/Periodical/gyysyfs201705005
[22] 梁吉艳, 邢德海, 李丹等.不同金属氧化物电极组合降解苯酚过程比较分析[J].当代化工, 2017, 46(10):1984-1986. http://www.cnki.com.cn/Article/CJFDTOTAL-SYHH201710009.htm
[23] Zhang Y, Tran H P, Du X, et al. Efficient pyrite activating persulfate process for degradation of p-chloroaniline in aqueous systems:A mechanistic study[J]. Chemical Engineering Journal, 2017, 308:1112-1119. http://cn.bing.com/academic/profile?id=589550bc1e13fa5fdba3dc553e702e54&encoded=0&v=paper_preview&mkt=zh-cn
[24] Chen S, Xiong P, Zhan W, et al. Degradation of ethylthionocarbamate by pyrite-activated persulfate[J]. Minerals Engineering, 2018, 122:38-43. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=cd1956a2be88854b34d6d81a76e70871
[25] Khataee A, Honarnezhad R, Fathinia M. Degradation of sodium iso-propyl xanthate from aqueous solution using sonocatalytic process in the presence of chalcocite nanoparticles:Insights into the degradation mechanism and phyto-toxicity impacts[J]. Journal of Environmental Management, 2018, 211:225-237. doi: 10.1016/j.jenvman.2018.01.054
[26] Wang X, Liu W, Duan H, et al. Degradation mechanism study of amine collectors in Fenton process by quantitative structure-activity relationship analysis[J]. Physicochemical Problems of Mineral Processing, 2018(3):713-721. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=9b9a104b78ca9fa903fed196354cdc0b
[27] 李天国, 占强, 徐晓军, 等.脉冲电催化内电解去除浮选废水中的铅和苯胺黑药[J].中国有色金属学报, 2015(6):1694-1704. http://d.old.wanfangdata.com.cn/Periodical/zgysjsxb201506035
[28] 姜铭峰.基于海泡石制备的纳米复合材料对重金属的去除研究[D].西安: 陕西科技大学, 2019.
[29] 李超, 王丽萍, 郭昭华, 等.粉煤灰酸溶渣合成13X分子筛及其对铜离子吸附性能[J].无机盐工业, 2018, 50(9):63-66. http://d.old.wanfangdata.com.cn/Periodical/wjygy201809018
[30] 李超, 王丽萍, 郭昭华, 等.粉煤灰提铝后尾渣合成13X分子筛及其对Pb~(2+)吸附性能的研究[J].矿产保护与利用, 2018(6):98-102. http://kcbh.cbpt.cnki.net/WKD/WebPublication/paperDigest.aspx?paperID=c05b7125-c562-4ef3-8474-92d60d12eecb
[31] 文虹.CP吸附剂处理铅锌选矿废水试验研究[D].徐州: 中国矿业大学, 2018.
[32] 马健伟, 任淑鹏, 初阳, 等.化学沉淀法处理重金属废水的研究进展[J].化学工程师, 2018(8):57-59. http://d.old.wanfangdata.com.cn/Periodical/gyscl201112003
[33] 王明辉, 晏波, 麦戈, 等.分步沉淀法处理酸性矿山废水[J].化工环保, 2016, 36(1):47-52. http://d.old.wanfangdata.com.cn/Periodical/hghb201601010
[34] 田宇, 陆天友, 盛贵尚, 等.电化学沉淀法去除氨氮和总磷效能研究[J].广州化学, 2019, 44(1):10-14. http://d.old.wanfangdata.com.cn/Periodical/gzhx201901002
[35] 周仲魁, 陈泽堂, 孙占学, 人工湿地在治理矿山废水中的应用[J].铀冶炼, 2008, 27(4):202-205. http://d.old.wanfangdata.com.cn/Periodical/yky200804009
[36] 闫虎祥, 周杰, 高宝钗, 生物制剂深度处理技术在选矿废水改造工程中的应用[J].广东化工, 2019, 46(14):147-148. http://d.old.wanfangdata.com.cn/Periodical/gdhg201914071
[37] 唐剑, 电化学深度处理技术在铅冶炼废水处理中的应用[J].湖南有色金属, 2017, 33(1):66-67. http://d.old.wanfangdata.com.cn/Periodical/hnysjs201701017
[38] 王辉, 铜矿酸性矿山废水AMD综合膜处理技术[C]//第三届膜分离技术在冶金工业中应用研讨会论文集, 2009: 84-85.
[39] 季常青, 黄怀国, 张卿, 等.膜分离技术在矿坑含铜废水资源化中的应用及优化[J].黄金科学与技术, 2013, 21(5):102-105. http://d.old.wanfangdata.com.cn/Periodical/hjkxjs201305029
[40] 胡波.复杂多金属硫化矿选矿废水处理与回用工艺研究[D].长沙: 湖南农业大学, 2012.
[41] 姜智超, 杨国超, 付向辉, 等.5000t/d钨铋选矿废水处理工业分流试验[J].矿业工程, 2019, 39(3):77-80. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=kygc201903019
[42] 付金涛, 锡铁山铅锌矿选矿废水高效循环利用实践[J].中国有色金属, 2018(S1):367-370. http://d.old.wanfangdata.com.cn/Periodical/xdky201810040
[43] 龙中, 吴攀, 黄家琰, 等.多级复氧反应-垂直流人工湿地深度处理煤矿酸性废水[J].环境工程学报, 2019, 13(6):1391-1399. http://d.old.wanfangdata.com.cn/Periodical/hjwrzljsysb201906016
[44] 宋淑敏, 刘伟, 朱丽云, 等.云南某锌冶炼厂废水深度处理工程改造与实践[J].化学工业工程, 2019, 36(1):78-83. http://d.old.wanfangdata.com.cn/Periodical/hxgyygc201901010
[45] Li H G, Watson J, Zhang Y H, et al. Environment-enhancing process for algal wastewater treatment, heavy metal control and hydrothermal biofuel production:A critical review[J]. Bioresource Technology, 2020, 298:122421.c http://cn.bing.com/academic/profile?id=9dfb9a81a9b5fa7442af48a604e7f0be&encoded=0&v=paper_preview&mkt=zh-cn
-