-
摘要:
阐述了搅拌细磨技术在矿物加工行业细磨、超细磨作业流程中的重要作用,详细分析了螺旋式、盘式、棒式三种搅拌细磨装置的重要优势和应用范围。重点对细磨效果关键因子的理论分析和基于CFD、DEM、PEPT的模拟仿真过程及结果进行了探讨,详述了搅拌细磨技术的研究进展。在此基础上,总结了以三种搅拌装置为代表的搅拌细磨装备的典型结构及研发、应用进展,以期能对搅拌细磨技术和装备的研究、推广提供帮助,为实现矿物加工行业的节能高效细磨、超细磨提供有益借鉴。
Abstract:The important role of stirring fine grinding technology in the process of fine grinding and ultra-fine grinding in mineral processing industry was expounded. The vital advantage and application area of the screw, disc and rod fine grinding agitators are analyzed in detailed. Theoretical analysis of key factors of fine grinding effect and simulation processes and results based on CFD, DEM and PEPT were discussed emphatically. Also, the research progress of stirring fine grinding technology was analyzed. Then, the typical structure, research, development and application progress of fine grinding equipments represented by three agitators mentioned above were summarized, so as to give a hand to the research and popularization of stirring fine grinding technology and equipments. And, they can provide useful references to the realization of energy-saving and efficient fine grinding and ultra-fine grinding in mineral process industry.
-
Key words:
- screw type /
- disc type /
- rod type /
- fine grinding /
- ultra-fine grinding /
- technical research /
- application progress
-
-
[1] 卢世杰, 刘佳鹏, 何建成, 等.几种典型搅拌磨机磨矿机理的研究进展[J].有色金属:选矿部分, 2017(1):13-21. http://d.old.wanfangdata.com.cn/Periodical/ysjs-xk2017z1004
[2] 卢世杰, 韩登峰, 周宏喜, 等.立式螺旋磨矿技术在选矿中的发展与应用[J].有色金属:选矿部分, 2011(S1):90-95. http://d.old.wanfangdata.com.cn/Periodical/ysjs-xk2011z1015
[3] Jankovic A. Mathematical modelling of stirred mills[D]. Australia, Queensland: University of Queensland, 1999.
[4] Stehr N, Mehta R K, Herbst J A. Comparison of energy requirements for conventional and stirred ball milling of coal-water slurries[J]. Coal Preparation, 1987, 4(3):209-226. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=10.1080/07349348708945533
[5] Shi F, Morrison R, Cervellin A, et al. Comparison of energy efficiency between ball mills and stirred mills in coarse grinding[J]. Minerals Enginnering, 2009, 22(7):673-680. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=6605ec5bfce3191aaabedde30caff157
[6] Jankovic A. Variables affecting the fine grinding of minerals using stirred mills[J]. Minerals Engineering, 2003, 16(4):337-345. doi: 10.1016/S0892-6875(03)00007-4
[7] Schonert K. Advances in comminution fundamental, and impacts on technology[A]. XVII International Mineral Processing Congress, Dresden, 1991, 9(1):1-21.
[8] Stehr N, Schwedes J. Investigation of the grinding behaviour of a stirred ball mill[J]. German Chemical Engineering, 1983, 6(6):337-343.
[9] Stehr N. Recent developments in stirred ball milling[J]. International Journal Mineral Processing, 1988, 22(1):431-444. http://cn.bing.com/academic/profile?id=8c50a225908703700090a103e9382a8e&encoded=0&v=paper_preview&mkt=zh-cn
[10] Kwade A. Wet comminution in stirred media mills-research and its practical application[J]. Powder Technology, 1999, 105(1):14-20. http://d.old.wanfangdata.com.cn/NSTLQK/10.1016-S0032-5910(99)00113-8/
[11] Kwade A. Determination of the most important grinding mechanism in stirred media mills by calculating stress intensity and stress number[J]. Powder Technology, 1999, 105(1):382-388. http://d.old.wanfangdata.com.cn/NSTLQK/10.1016-S0032-5910(99)00162-X/
[12] Kwade A, Schwedes J. Breaking characteristics of different materials and their effect on stress intensity and stress number in stirred media mills[J]. Powder Technology, 2002, 122(2):109-121. http://d.old.wanfangdata.com.cn/NSTLQK/10.1016-S0032-5910(01)00406-5/
[13] Becker M, Kwade A, Schwedes J. Stress intensity in stirred media mills and its effect on specific energy requirement[J]. Int. J. Miner. Process, 2001, 61(3):189-208. doi: 10.1016/S0301-7516(00)00037-5
[14] 周宏喜, 卢世杰, 何建成.立磨机磨矿机理研究[J].中国矿业, 2014(5):146-148, 153. doi: 10.3969/j.issn.1004-4051.2014.05.040
[15] 何建成, 卢世杰, 周宏喜, 等.立式螺旋搅拌磨机磨矿机理研究——矿浆浓度及磨矿时间的影响[J].有色金属:选矿部分, 2015(5):66-68, 86. http://www.cnki.com.cn/Article/CJFDTotal-YSXK201505015.htm
[16] Jayasundara C T, Yang R Y, Guo B Y, et al. Effect of slurry properties on particle motion in IsaMills[J]. Minerals Engineering, 2009, 22(11):886-892. doi: 10.1016/j.mineng.2009.04.009
[17] Jayasundara C T, Yang R Y, Yu A B, et al. Effects of disc rotation speed and media loading on particle flow and grinding performance in a horizontal stirred mill[J]. Int. J. Miner. Process, 2010, 96(1):27-35. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=a430b4b4997975ad4bd596e263d46ac2
[18] Jayasundara C T, Yang R Y, Yu A B. Effect of the size of media on grinding performance in stirred mills[J]. Minerals Engineering, 2012, 33:66-71. doi: 10.1016/j.mineng.2011.10.012
[19] Sinnott M, Cleary P W, Morrison R. Analysis of stirred mill performance using DEM simulation:Part 1- Media motion, energy consumption and collisional environment[J]. Minerals Engineering, 2006, 19(15):1537-1550. doi: 10.1016/j.mineng.2006.08.012
[20] Cleary P W, Sinnott M, Morrison R. Analysis of stirred mill performance using DEM simulation:Part 2- Coherent flow structures, liner stress and wear, mixing and transport[J]. Minerals Engineering, 2006, 19(15):1551-1572. doi: 10.1016/j.mineng.2006.08.013
[21] Sinnott M, Cleary P W, Morrison R D. Slurry flow in a tower mill[J]. Minerals Engineering, 2011, 24(2):152-159. doi: 10.1016/j.mineng.2010.11.002
[22] Sinnott M D, Cleary P W, Morrison R D. Is media shape important for grinding performance in stirred mills[J]. Minerals Engineering, 2011, 24(2):138-151. doi: 10.1016/j.mineng.2010.10.016
[23] R.W. Barley, J. Conway-Baker, R.D. Pascoe, et al. Measurement of the motion of grinding media in a vertically stirred mill using positron emission particle tracking (PEPT) Part II[J]. Minerals Engineering, 2004, 17(11): 1179-1187.
[24] J. Conway-Baker, R.W. Barley, R.A. Williams, X. Jia, J. Kostuch, B. McLoughlin, D.J. Parker. Measurement of the motion of grinding media in a vertically stirred mill using positron emission particle tracking (PEPT)[J]. Minerals Engineering, 2002, 15(1): 53-59.
[25] 母福生, 杨鹏.搅拌磨机介质运动离散元数值模拟分析[J].中国机械工程, 2012(20):2465-2468. doi: 10.3969/j.issn.1004-132X.2012.20.015
[26] 王鑫, 肖正明, 龙稳.基于离散元法的塔磨机介质运动仿真分析[J].矿山机械, 2015(7):74-78. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ksjx201507019
[27] 何建成, 卢世杰, 周宏喜, 等.基于ANSYS立磨机螺旋搅拌机构的分析与优化[J].有色金属:选矿部分, 2014(3):72-75. http://d.old.wanfangdata.com.cn/Periodical/ysjs-xk201403018
[28] 孙小旭, 卢世杰, 周宏喜, 等.细磨用KLM立磨机选型试验研究[J].铜业工程, 2018, (6):73-76. doi: 10.3969/j.issn.1009-3842.2018.06.021
[29] 卢世杰, 孙小旭.大型立式螺旋搅拌磨机应用现状[J].铜业工程, 2014, (2):38-42. doi: 10.3969/j.issn.1009-3842.2014.02.012
[30] 金勇士.艾萨磨技术的应用及最新进展[J].有色设备, 2013, (4):15-19. http://www.cqvip.com/QK/98456X/201304/46967437.html
[31] 杨采文, 毛莹博, 邓久帅, 等.矿山磨矿设备的应用及研究进展[J].现代矿业, 2015(7):190-192, 195. doi: 10.3969/j.issn.1674-6082.2015.07.077
[32] Gao M, Young M, Allum P. IsaMill fine grinding technology and its industrial applications at Mount Isa Mines[C]//In 34th Annual Meeting of The Canadian Mineral Processors. 2002: 1-18.
[33] Roitto HL, Paz A, Astholm M. Stirred Milling Technology-A New Concept in Fine Grinding. Metalurgical Plant Dsign and Operating Strategies (Metplant 2013). 2013: 190-201.
[34] Jankovic A, Valery W, La Rosa D. Fine Grinding in the Australian Mining Industry[J]. 2008.1-11.
[35] 孙小旭.GJM型棒式搅拌磨机工业试验研究[J].有色金属:选矿部分, 2017(3):66-69. http://d.old.wanfangdata.com.cn/Periodical/ysjs-xk201703014
[36] 何建成, 孙小旭, 姚建超, 等.石墨高效再磨擦洗技术及工业试验研究[J].有色金属:选矿部分, 2018(2):78-81. http://d.old.wanfangdata.com.cn/Periodical/ysjs-xk201802017
-