-
摘要:
为了研究菱镁矿粉磨程度的定量表征,以辽宁丹东地区菱镁矿为原料,进行了磨矿试验、粒度检测试验、磨矿细度试验,应用分形理论,建立了用于表征粉磨菱镁矿颗粒粒度分布的体分形维数数学关系。结果表明:体分形维数与磨矿细度呈非线性关系,当体分形维数均值达到极大值,即D3=2.4662时,对应的磨矿细度为-0.074 mm含量81.6%,通过浮选试验发现此时浮选指标最好。该研究实现了菱镁矿粉磨程度的定量表征,建立了体分形维数与选矿浮选的联系。
Abstract:In order to study the quantitative characterization of magnesite grinding degree, grinding test, particle size detection test and grinding fineness test were carried out with the raw material of magnesite derived from Dandong area of Liaoning Province. Based on the fractal theory, a mathematical model of volume fractal dimension was established to characterize the particle size distribution of magnesite grinding. The results showed that the volume fractal dimension has a non-linear relationship with the grinding fineness. When the mean value of volume fractal dimension reaches the maximum value, that is, D3=2.4662, the corresponding grinding fineness of -0.074 mm is 81.6%, while the flotation test obtained the optimal flotation index. Quantitative characterization of magnesite grinding degree was realized, and the relationship between volume fractal dimension and flotation was established in this paper.
-
-
表 1 原矿化学成分分析
Table 1. Analysis of raw ore chemical composition
Component MgO CaO SiO2 TFe grade/% 45.2 1.09 3.18 0.34 表 2 不同细度下菱镁矿粒度分布特征拟合结果 /%
Table 2. Fitting results of particle size distribution characteristic of magnesite at different fineness fineness
fineness (%) xe D3 r 73.8 58.852 6 2.460 2 0.975 7 77.5 55.280 5 2.456 6 0.979 3 81.6 51.847 0 2.462 5 0.979 4 88.8 44.870 2 2.455 2 0.974 4 94.2 42.654 4 2.443 8 0.970 6 fineness (%) xe D3 r 73.8 53.759 5 2.450 2 0.978 4 77.5 56.854 7 2.461 3 0.978 9 81.6 52.458 6 2.467 5 0.979 1 88.8 48.658 2 2.460 2 0.973 2 94.2 43.584 6 2.453 5 0.971 1 fineness (%) xe D3 r 73.8 55.689 5 2.455 3 0.972 5 77.5 57.588 7 2.460 7 0.975 6 81.6 54.858 6 2.468 5 0.978 6 88.8 49.255 2 2.459 2 0.971 8 94.2 46.558 6 2.448 5 0.970 9 表 3 磨矿细度试验结果
Table 3. Results of grinding fineness test
D3 yield/% MgO grade/% MgO rate of recovery/% 2.460 2 83.16 46.42 85.35 2.456 6 86.97 46.43 89.28 2.462 5 87.84 46.47 90.25 2.455 2 86.17 46.44 88.48 2.443 8 85.42 46.46 87.74 D3 yield/% MgO grade/% MgO rate of recovery/% 2.450 2 82.56 45.85 81.48 2.461 3 85.87 46.02 84.06 2.467 5 86.97 46.58 87.73 2.460 2 85.72 45.97 85.39 2.453 5 83.98 45.96 82.64 D3 yield/% MgO grade/% MgO rate of recovery/% 2.455 3 81.49 45.78 83.59 2.460 7 82.88 46.16 86.5 2.468 5 85.41 46.25 89.14 2.459 2 82.25 45.98 87.47 2.448 5 80.34 45.83 85.3 -
[1] 肖丽聪, 代淑娟.我国菱镁矿现状及选矿方法的介绍[J].有色矿冶, 2017, 33(1):29-31. doi: 10.3969/j.issn.1007-967X.2017.01.008
[2] 邸素梅.我国菱镁矿资源及市场[J].非金属矿, 2001, 24(1):5-6. doi: 10.3969/j.issn.1000-8098.2001.01.001
[3] 李晓安, 代淑娟, 周凌嘉, 等.辽宁某高硅低品位镁矿浮选提纯试验研究[J].中国矿业, 2012, 21(2):63-67. doi: 10.3969/j.issn.1004-4051.2012.02.018
[4] 郗悦, 代淑娟, 郭小飞, 等.海城某菱镁矿石反浮选试验研究[J].非金属矿, 2018, 41(3):76-78. doi: 10.3969/j.issn.1000-8098.2018.03.025
[5] 董庆国, 白阳, 吴清峰, 等.辽宁某低品位菱镁矿浮选除杂试验研究[J].非金属矿, 2018, 41(3):100-102. doi: 10.3969/j.issn.1000-8098.2018.03.033
[6] Mandelbrot B B. The fractal geometey of nature[M]. San Francisco, CA, U-S: W.H.Freeman and Company, 1982.
[7] Huang J Y, Hu S S, Xu S L, et al. Fractal crushing of granular materials under confined compression at different strain rates[J]. International Journal of Impact Engineering, 2017, 106:259-265. doi: 10.1016/j.ijimpeng.2017.04.021
[8] Krisnan R, Ruchi J. Association between vascular density and loss of protective RAS during early NPDR by fractal dimension[C]. 2017 ARVO Annual Meeting: Global Connections in Vinsion Research. Baltimore, MD, US: the Association for Research in Vision and Ophthalmology, 2017.
[9] Zhou B, Wang J. Three-dimensional sphericity, roundness and fractal dimension of sand particles[J]. Géotechnique, 2017, 112:207-219. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=4ac0035989df8fc4cdf8d6c0aae2c953
[10] Florindo J B, Bruno O M. Closed contour fractal dimension estimation by the Fourier transform[J]. Chaos, Solitons&Fractals, 2011, 44(10):851-861. http://d.old.wanfangdata.com.cn/OAPaper/oai_arXiv.org_1201.3097
[11] 龚莉.基于球磨法的超细石英粉体分形研究[D].哈尔滨: 哈尔滨工业大学.2007.
[12] Logan B E. Environmental transport processes[M]. New York, NY, US: John wiley&Sons, 1999.
[13] Helalizadeh A, Müller-Steinhagen H, Jamialahmadi M. Application of fractal theory for characterization of crystalline deposits[J]. Chemical Engineering Science, 2006, 61:2069-2078. doi: 10.1016/j.ces.2005.10.046
[14] 谢和平, 高峰, 周宏伟, 等.岩石断裂和破碎的分形研究[J].防灾减灾工程学报, 2003, 23(4):1-9. http://d.old.wanfangdata.com.cn/Periodical/dzxk200304001
[15] 焦红蕾, 夏德宏, 张省现, 等.基于分形方法的煤炭研磨颗粒粒度分布模型[J].北京科技大学学报, 2007(11):1151-1153, 1170. doi: 10.3321/j.issn:1001-053x.2007.11.019
[16] 戴丽燕.关于Rosin-Rammler粒径分布函数的研究[J].有色矿冶, 2000, 16(3):15-17. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK200001087458
[17] Yang Y C, Wang L, Feng Y. Study on fractal mathematical models of pulverizing theory for one[J]. Powder Technology, 2016, 288(1):354-359.
-