锑污染土壤微生物修复机制研究进展

许瑞, 南小龙, 蒋国清, 覃金宁, 何友宇, 熊作胜, 姜必广, 王宾海, 李骞. 锑污染土壤微生物修复机制研究进展[J]. 矿产保护与利用, 2020, 40(4): 23-34. doi: 10.13779/j.cnki.issn1001-0076.2020.04.004
引用本文: 许瑞, 南小龙, 蒋国清, 覃金宁, 何友宇, 熊作胜, 姜必广, 王宾海, 李骞. 锑污染土壤微生物修复机制研究进展[J]. 矿产保护与利用, 2020, 40(4): 23-34. doi: 10.13779/j.cnki.issn1001-0076.2020.04.004
Rui XU, Xiaolong NAN, Guoqing JIANG, Jinning QIN, Youyu HE, Zuosheng XIONG, Biguang JIANG, Binhai WANG, Qian LI. Research Progress on Bioremediation Mechanism of Antimony Contaminated Soil[J]. Conservation and Utilization of Mineral Resources, 2020, 40(4): 23-34. doi: 10.13779/j.cnki.issn1001-0076.2020.04.004
Citation: Rui XU, Xiaolong NAN, Guoqing JIANG, Jinning QIN, Youyu HE, Zuosheng XIONG, Biguang JIANG, Binhai WANG, Qian LI. Research Progress on Bioremediation Mechanism of Antimony Contaminated Soil[J]. Conservation and Utilization of Mineral Resources, 2020, 40(4): 23-34. doi: 10.13779/j.cnki.issn1001-0076.2020.04.004

锑污染土壤微生物修复机制研究进展

  • 基金项目:
    国家重点研发计划(2018YFE0110200);湖南省自然资源科技计划项目(2020-21);云南省科技计划项目(2018ZE001)
详细信息
    作者简介: 许瑞(1994-), 男, 甘肃武威人, 博士研究生, 研究方向:生物法修复矿区重金属污染土壤, E-mail:ruixu1923@csu.edu.cn
    通讯作者: 李骞(1975-), 男, 甘肃静宁人, 博士, 教授, 研究方向:贵金属冶金及矿产资源综合利用。E-mail:csuliqian@126.com
  • 中图分类号: X172

Research Progress on Bioremediation Mechanism of Antimony Contaminated Soil

More Information
  • 锑(Sb)是一种有毒的类金属,由于Sb的广泛使用和采矿活动,大量的Sb释放到土壤环境中,对人类和生态系统健康构成了严重威胁。微生物修复作为一种环境友好且成本低廉的土壤修复技术,在Sb污染土壤修复中的应用受到广泛关注。讨论了土壤系统特征对Sb行为的影响,着重讨论了土壤理化性质对Sb迁移转化行为的影响。综述了近年来微生物修复Sb污染土壤机制的研究进展,特别是微生物氧化、还原、吸附和甲基化等。重点分析了微生物作用与土壤系统中存在的铁锰(氢)氧化物吸附相关联的可行性,这种以铁锰(氢)氧化物为基础的技术可能是一种修复Sb污染土壤的有效方法。
  • 加载中
  • 图 1  世界各国Sb储量(数据来源:美国地质调查局,USGS)

    Figure 1. 

    图 2  Sb(Ⅲ)吸附,电子转移及Sb(Ⅴ)和Fe(Ⅱ)吸附反应示意图[41]

    Figure 2. 

    图 3  不同Sb物种的甲基化途径[3]

    Figure 3. 

  • [1]

    FILELLA M, BELZILE N, CHEN Y W. Antimony in the environment:A review focused on natural waters:I. Occurrence[J]. Earth-Science Reviews, 2002, 57(1-2):125-176. doi: 10.1016/S0012-8252(01)00070-8

    [2]

    WILSON S C, LOCKWOOD P V, ASHLEY P M, et al. The chemistry and behaviour of antimony in the soil environment with comparisons to arsenic:A critical review[J]. Environmental Pollution, 2010, 158(5):1169-1181. doi: 10.1016/j.envpol.2009.10.045

    [3]

    LI J X, WANG Q, OREMLAND R S, et al. Microbial antimony biogeochemistry:Enzymes, regulation, and related metabolic pathways[J]. Applied and Environmental Microbiology, 2016, 82(18):5482-5495. doi: 10.1128/AEM.01375-16

    [4]

    MURCIEGO A M, SANCHEZ A G, GONZALEZ M A R, et al. Antimony distribution and mobility in topsoils and plants (cytisus striatus, cistus ladanifer and dittrichia viscosa) from polluted sb-mining areas in extremadura (spain)[J]. Environmental Pollution, 2007, 145(1):15-21. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=47ecb00b92b973b3856be6d7b4c9a7d7

    [5]

    J, WANG X, GUO X J, et al. A review of removal technology for antimony in aqueous solution[J]. Journal of Environmental Sciences, 2020, 90:189-204. doi: 10.1016/j.jes.2019.12.008

    [6]

    SMICHOWSKI P. Antimony in the environment as a global pollutant:A review on analytical methodologies for its determination in atmospheric aerosols[J]. Talanta, 2008, 75(1):2-14. doi: 10.1016/j.talanta.2007.11.005

    [7]

    HOCKMANN K, LENZ M, TANDY, et al. Release of antimony from contaminated soil induced by redox changes[J]. Journal of Hazardous Materials, 2014, 275:215-221. doi: 10.1016/j.jhazmat.2014.04.065

    [8]

    HE M C, WANG X Q, WU F C, et al. Antimony pollution in china[J]. Science of the Total Environment, 2012, 421:41-50. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=4f4cbdf63cd0b7368df9d9f31b564458

    [9]

    GUEMIZA K, MERCIER G, BLAIS J F. Pilot-scale decontamination of small-arms shooting range soil polluted with copper, lead, antimony, and zinc by acid and saline leaching[J]. Journal of Environmental Engineering, 2015, 141(1):1-10. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=d2528af92ea4aaecb1c8aecc5b95a6b9

    [10]

    TSITONAKI A, PETRI B, CRIMI M, et al. In situ chemical oxidation of contaminated soil and groundwater using persulfate:A review[J]. Critical Reviews in Environmental Science and Technology, 2010, 40(1):55-91. doi: 10.1080/10643380802039303

    [11]

    BARKER A J, DOUGLAS T A, ILGEN A G, et al. Lead and antimony from bullet weathering in newly constructed target berms:Chemical speciation, mobilization, and remediation strategies[J]. Science of the Total Environment, 2019, 658:558-569. doi: 10.1016/j.scitotenv.2018.12.188

    [12]

    HUANG Y Z, ZHANG W Q, ZHAO L J. Silicon enhances resistance to antimony toxicity in the low-silica rice mutant, lsi1[J]. Chemistry & Ecology, 2012, 28(4):341-354. http://www.tandfonline.com/doi/abs/10.1080/02757540.2012.656609

    [13]

    PEDERSEN K B, JENSEN P E, OTTOSEN L M, et al. The relative influence of electrokinetic remediation design on the removal of As, Cu, Pb and Sb from shooting range soils[J]. Engineering Geology, 2018, 238:52-61. doi: 10.1016/j.enggeo.2018.03.005

    [14]

    WANG X L, WANG M H, QUAN S X, et al. Influence of thermal treatment on fixation rate and leaching behavior of heavy metals in soils from a typical e-waste processing site[J]. Journal of Environmental Chemical Engineering, 2016, 4(1):82-88. http://www.researchgate.net/publication/284113763_Influence_of_thermal_treatment_on_fixation_rate_and_leaching_behavior_of_heavy_metals_in_soils_from_a_typical_e-waste_processing_site

    [15]

    FENG R, WEI C, TU S, et al. The uptake and detoxification of antimony by plants:A review[J]. Environmental & Experimental Botany, 2013, 96:28-34. http://www.sciencedirect.com/science/article/pii/S0098847213001214

    [16]

    NGUYEN V K, PARK Y, LEE T. Microbial antimonate reduction with a solid-state electrode as the sole electron donor:A novel approach for antimony bioremediation[J]. Journal of Hazardous Materials, 2019, 377:179-185. doi: 10.1016/j.jhazmat.2019.05.069

    [17]

    UNGUREANU G, SANTOS S, BOAVENTURA R, et al. Arsenic and antimony in water and wastewater:Overview of removal techniques with special reference to latest advances in adsorption[J]. Journal of Environmental Management, 2015, 151:326-342. http://europepmc.org/abstract/med/25585146

    [18]

    WANG N N, ZHANG S H, HE M C. Bacterial community profile of contaminated soils in a typical antimony mining site[J]. Environmental Science and Pollution Research, 2018, 25(1):141-152. doi: 10.1007/s11356-016-8159-y

    [19]

    LUO J M, BAI Y H, LIANG J S, et al. Metagenomic approach reveals variation of microbes with arsenic and antimony metabolism genes from highly contaminated soil[J]. Plos One, 2014, 9(10):1-9. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=Doaj000004513582

    [20]

    MAJZLAN J, LALINSKA B, CHOVAN M, et al. A mineralogical, geochemical, and microbiogical assessment of the antimony- and arsenic-rich neutral mine drainage tailings near pezinok, slovakia[J]. American Mineralogist, 2011, 96(1):1-13. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=am.2011.3556

    [21]

    XI J H, HE M C, LIN C Y. Adsorption of antimony(Ⅲ) and antimony(Ⅴ) on bentonite:Kinetics, thermodynamics and anion competition[J]. Microchemical Journal, 2011, 97(1):85-91. doi: 10.1016/j.microc.2010.05.017

    [22]

    KONG L H, HU X Y, HE M C. Mechanisms of Sb(Ⅲ) oxidation by pyrite-induced hydroxyl radicals and hydrogen peroxide[J]. Environmental Science & Technology, 2015, 49(6):3499-3505. http://www.ncbi.nlm.nih.gov/pubmed/25714842

    [23]

    HERATH I, VITHANAGE M, BUNDSCHUH J. Antimony as a global dilemma:Geochemistry, mobility, fate and transport[J]. Environmental Pollution, 2017, 223:545-559. doi: 10.1016/j.envpol.2017.01.057

    [24]

    CHEN Y W, DENG T L, FILELLA M, et al. Distribution and early diagenesis of antimony species in sediments and porewaters of freshwater lakes[J]. Environmental Science & Technology, 2003, 37(6):1163-1168. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=a2bedb87f76a5b0b63769e5f6b2b3d0c

    [25]

    ARSIC M, TEASDALE P R, WELSH D T, et al. Diffusive gradients in thin films reveals differences in antimony and arsenic mobility in a contaminated wetland sediment during an oxic-anoxic transition[J]. Environmental Science & Technology, 2018, 52(3):1118-1127. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=afadfac4d19511d456d2389d5227a1ec

    [26]

    MITSUNOBU S, HARADA T, TAKAHASHI Y. Comparison of antimony behavior with that of arsenic under various soil redox conditions[J]. Environmental Science & Technology, 2006, 40(23):7270-7276. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=81c97da1fab4566d3bc318109120b71b

    [27]

    STEELY S, AMARASIRIWARDENA D, XING B S. An investigation of inorganic antimony species and antimony associated with soil humic acid molar mass fractions in contaminated soils[J]. Environmental Pollution, 2007, 148(2):590-598. doi: 10.1016/j.envpol.2006.11.031

    [28]

    KARIMIAN N, BURTON E D, JOHNSTON S G. Antimony speciation and mobility during Fe(Ⅱ)-induced transformation of humic acid-antimony(Ⅴ)-iron(Ⅲ) coprecipitates[J]. Environmental Pollution, 2019, 254:1-10. http://www.sciencedirect.com/science/article/pii/S0269749119330763

    [29]

    NAKAMARU Y, TAGAMI K, UCHIDA S. Antimony mobility in japanese agricultural soils and the factors affecting antimony sorption behavior[J]. Environmental Pollution, 2006, 141(2):321-326. doi: 10.1016/j.envpol.2005.08.040

    [30]

    FAN J X, WANG Y J, FAN T T, et al. Photo-induced oxidation of Sb(Ⅲ) on goethite[J]. Chemosphere, 2014, 95:295-300. doi: 10.1016/j.chemosphere.2013.08.094

    [31]

    TIGHE M, LOCKWOOD P. Importance of noncrystalline hydroxide phases in sequential extractions to fractionate antimony in acid soils[J]. Communications in Soil Science & Plant Analysis, 2007, 38(11-12):1487-1501. http://www.tandfonline.com/doi/full/10.1080/00103620701378441

    [32]

    AMBE S. Adsorption-kinetics of antimony(Ⅴ) ions onto alpha-Fe2O3 surfaces from an aqueous-solution[J]. Langmuir, 1987, 3(4):489-493. doi: 10.1021/la00076a009

    [33]

    WANG S L, MULLIGAN C N. Effect of natural organic matter on arsenic mobilization from mine tailings[J]. Journal of Hazardous Materials, 2009, 168(2-3):721-726. doi: 10.1016/j.jhazmat.2009.02.088

    [34]

    THANABALASINGAM P, PICKERING W F. Specific sorption of antimony(Ⅲ) by the hydrous oxides of Mn, Fe, and Al[J]. Water Air and Soil Pollution, 1990, 49(1-2):175-185. doi: 10.1007/BF00279519

    [35]

    ZHOU S, SATO T, OTAKE T. Dissolved silica effects on adsorption and co-precipitation of Sb(Ⅲ) and Sb(Ⅴ) with ferrihydrite[J]. Minerals, 2018, 8(3):1-12. http://ci.nii.ac.jp/naid/120006463576

    [36]

    QI P F, PICHLER T. Competitive adsorption of As(Ⅲ), As(Ⅴ), Sb(Ⅲ) and Sb(Ⅴ) onto ferrihydrite in multi-component systems:Implications for mobility and distribution[J]. Journal of Hazardous Materials, 2017, 330:142-148. doi: 10.1016/j.jhazmat.2017.02.016

    [37]

    GUO X J, WU Z J, HE M C, et al. Adsorption of antimony onto iron oxyhydroxides:Adsorption behavior and surface structure[J]. Journal of Hazardous Materials, 2014, 276:339-345. doi: 10.1016/j.jhazmat.2014.05.025

    [38]

    MITSUNOBU S, TAKAHASHI Y, TERADA Y, et al. Antimony(Ⅴ) incorporation into synthetic ferrihydrite, goethite, and natural iron oxyhydroxides[J]. Environmental Science & Technology, 2010, 44(10):3712-3718. http://www.ncbi.nlm.nih.gov/pubmed/20426473

    [39]

    SUN Q, LIU C, ALVES M E, et al. The oxidation and sorption mechanism of Sb on delta-MnO2[J]. Chemical Engineering Journal, 2018, 342:429-437. doi: 10.1016/j.cej.2018.02.091

    [40]

    ILGEN A G, TRAINOR T P. Sb(Ⅲ) and Sb(Ⅴ) sorption onto Al-rich phases:Hydrous Al oxide and the clay minerals kaolinite KGa-1b and oxidized and reduced nontronite NAu-1[J]. Environmental Science & Technology, 2012, 46(2):843-851. http://pubs.acs.org/doi/10.1021/es203027v

    [41]

    DU H H, TAO J, YANG R J, et al. Bacteria affect Sb(Ⅲ, Ⅴ) adsorption and oxidation on birnessite[J]. Journal of Soils and Sediments, 2020, 20:2418-2425. doi: 10.1007/s11368-020-02607-1

    [42]

    BELZILE N, CHEN Y W, WANG Z J. Oxidation of antimony (Ⅲ) by amorphous iron and manganese oxyhydroxides[J]. Chemical Geology, 2001, 174(4):379-387. doi: 10.1016/S0009-2541(00)00287-4

    [43]

    BAGHERIFAM S, LAKZIAN A, FOTOVAT A, et al. In situ stabilization of as and sb with naturally occurring Mn, Al and Fe oxides in a calcareous soil:Bioaccessibility, bioavailability and speciation studies[J]. Journal of Hazardous Materials, 2014, 273:247-252. doi: 10.1016/j.jhazmat.2014.03.054

    [44]

    XU W, WANG H, LIU R, et al. The mechanism of antimony(Ⅲ) removal and its reactions on the surfaces of Fe-Mn binary oxide[J]. Journal of Colloid & Interface Science, 2011, 363(1):320-326. http://www.ncbi.nlm.nih.gov/pubmed/21840528

    [45]

    FU L, SHOZUGAWA K, MATSUO M. Oxidation of antimony (Ⅲ) in soil by manganese (Ⅳ) oxide using x-ray absorption fine structure[J]. Journal of Environmental Sciences, 2018, 73:31-37. doi: 10.1016/j.jes.2018.01.003

    [46]

    RABBI S M F, DANIEL H, LOCKWOOD P V, et al. Physical soil architectural traits are functionally linked to carbon decomposition and bacterial diversity[J]. Scientific Reports, 2016, 6:1-9. doi: 10.1038/s41598-016-0001-8

    [47]

    XU Y L, SESHADRI B, BOLAN N, et al. Microbial functional diversity and carbon use feedback in soils as affected by heavy metals[J]. Environment International, 2019, 125:478-488. doi: 10.1016/j.envint.2019.01.071

    [48]

    HE M C, WANG N N, LONG X J, et al. Antimony speciation in the environment:Recent advances in understanding the biogeochemical processes and ecological effects[J]. Journal of Environmental Sciences, 2019, 75:14-39. doi: 10.1016/j.jes.2018.05.023

    [49]

    BROHON B, DELOLME C, GOURDON R. Complementarity of bioassays and microbial activity measurements for the evaluation of hydrocarbon-contaminated soils quality[J]. Soil Biology & Biochemistry, 2001, 33(7-8):883-891. http://www.sciencedirect.com/science/article/pii/S0038071700002340

    [50]

    KARACA A, NASEBY D C, LYNCH J M. Effect of cadmium contamination with sewage sludge and phosphate fertiliser amendments on soil enzyme activities, microbial structure and available cadmium[J]. Biology and Fertility of Soils, 2002, 35(6):428-434. doi: 10.1007/s00374-002-0490-4

    [51]

    AN Y J, KIM M. Effect of antimony on the microbial growth and the activities of soil enzymes[J]. Chemosphere, 2009, 74(5):654-659. doi: 10.1016/j.chemosphere.2008.10.023

    [52]

    SHOTYK W, KRACHLER M, CHEN B. Anthropogenic impacts on the biogeochemistry and cycling of antimony[M]. Sigel A, Sigel H, Sigel RKO (eds). Metal ions in biological systems, vol 44:Biogeochemistry, availability, and transport of metals in the environment. London:Taylor & Francis Ltd, 2005:171-203.

    [53]

    ASAKURA K, SATOH H, CHIBA M, et al. Genotoxicity studies of heavy metals:Lead, bismuth, indium, silver and antimony[J]. Journal of Occupational Health, 2009, 51(6):498-512. doi: 10.1539/joh.L9080

    [54]

    YANG X Z, SHI Z, YUAN M Y, et al. Adsorption of trivalent antimony from aqueous solution using graphene oxide:Kinetic and thermodynamic studies[J]. Journal of Chemical and Engineering Data, 2015, 60(3):806-813. http://pubs.acs.org/doi/10.1021/je5009262

    [55]

    OBIAKOR M O, WILSON S C, TIGHE M, et al. Antimony causes mortality and induces mutagenesis in the soil functional bacterium Azospirillum brasilense sp7[J]. Water Air and Soil Pollution, 2019, 230(8):1-14. http://www.researchgate.net/publication/334725736_Antimony_Causes_Mortality_and_Induces_Mutagenesis_in_the_Soil_Functional_Bacterium_Azospirillum_brasilense_Sp7

    [56]

    MENG Y L, LIU Z J, ROSEN B P. As(Ⅲ) and Sb(Ⅲ) uptake by GIpf and efflux by ArsB in escherichia coli[J]. Journal of Biological Chemistry, 2004, 279(18):18334-18341. doi: 10.1074/jbc.M400037200

    [57]

    FILELLA M, BELZILE N, LETT M C. Antimony in the environment:A review focused on natural waters. Ⅲ. Microbiota relevant interactions[J]. Earth-Science Reviews, 2007, 80(3-4):195-217. doi: 10.1016/j.earscirev.2006.09.003

    [58]

    MURATA T, KANAO-KOSHIKAWA M, TAKAMATSU T. Effects of Pb, Cu, Sb, in and ag contamination on the proliferation of soil bacterial colonies, soil dehydrogenase activity, and phospholipid fatty acid profiles of soil microbial communities[J]. Water Air and Soil Pollution, 2005, 164(1-4):103-118. doi: 10.1007/s11270-005-2254-x

    [59]

    WANG Q S, HE M C, WANG Y. Influence of combined pollution of antimony and arsenic on culturable soil microbial populations and enzyme activities[J]. Ecotoxicology, 2011, 20(1):9-19. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=860de02d949e00d7ff9b39268059a118

    [60]

    DIQUATTRO S, GARAU G, MANGIA N P, et al. Mobility and potential bioavailability of antimony in contaminated soils:Short-term impact on microbial community and soil biochemical functioning[J]. Ecotoxicology and Environmental Safety, 2020, 196:1-10. http://www.researchgate.net/publication/340546208_Mobility_and_potential_bioavailability_of_antimony_in_contaminated_soils_Short-term_impact_on_microbial_community_and_soil_biochemical_functioning

    [61]

    KASSA-LAOUAR M, MECHAKRA A, RODRIGUE A, et al. Antioxidative enzyme responses to antimony stress of serratia marcescens - an endophytic bacteria of Hedysarum pallidum roots[J]. Polish Journal of Environmental Studies, 2020, 29(1):141-152. http://www.researchgate.net/publication/335567188_Antioxidative_Enzyme_Responses_to_Antimony_Stress_of_Serratia_marcescens_-_an_Endophytic_Bacteria_of_Hedysarum_pallidum_Roots

    [62]

    WYSOCKI R, CHERY C C, WAWRZYCKA D, et al. The glycerol channel fps1p mediates the uptake of arsenite and antimonite in saccharomyces cerevisiae[J]. Molecular Microbiology, 2001, 40(6):1391-1401. doi: 10.1046/j.1365-2958.2001.02485.x

    [63]

    TOWNSHEND A. Metals and their compounds in the environment. Occurrence, analysis and biological relevance[J]. Analytica Chimica Acta, 1993, 271(2):331-332. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=10.1002/anie.199201021

    [64]

    WANG G J, KENNEDY S P, FASILUDEEN S, et al. Arsenic resistance in halobacterium sp strain nrc-1 examined by using an improved gene knockout system[J]. Journal of Bacteriology, 2004, 186(10):3187-3194. doi: 10.1128/JB.186.10.3187-3194.2004

    [65]

    BRANCO R, CHUNG A P, MORAIS P V. Sequencing and expression of two arsenic resistance operons with different functions in the highly arsenic-resistant strain Ochrobactrum tritici SCⅡ24T[J]. Bmc Microbiology, 2008, 8:1-12. doi: 10.1186/1471-2180-8-1

    [66]

    LI J, WANG Q, ZHANG S Z, et al. Phylogenetic and genome analyses of antimony-oxidizing bacteria isolated from antimony mined soil[J]. International Biodeterioration & Biodegradation, 2013, 76:76-80. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=96c220b3794645e537bf3c4ab8efd62f

    [67]

    ROSEN B R, LIU Z J. Transport pathways for arsenic and selenium:A mini review[J]. Environment International, 2009, 35(3):512-515. doi: 10.1016/j.envint.2008.07.023

    [68]

    BUTCHER B G, DEANE S M, RAWLINGS D E. The chromosomal arsenic resistance genes of thiobacillus ferrooxidans have an unusual arrangement and confer increased arsenic and antimony resistance to escherichia coli[J]. Applied and Environmental Microbiology, 2000, 66(5):1826-1833. doi: 10.1128/AEM.66.5.1826-1833.2000

    [69]

    ACHOUR A R, BAUDA P, BILLARD P. Diversity of arsenite transporter genes from arsenic-resistant soil bacteria[J]. Research in Microbiology, 2007, 158(2):128-137. doi: 10.1016/j.resmic.2006.11.006

    [70]

    ROSEN B P. Families of arsenic transporters[J]. Trends in Microbiology, 1999, 7(5):207-212. doi: 10.1016/S0966-842X(99)01494-8

    [71]

    KANG Y S, SHI Z J, BOTHNER B, et al. Involvement of the acr3 and dcta anti-porters in arsenite oxidation in Agrobacterium Tumefaciens 5A[J]. Environmental Microbiology, 2015, 17(6):1950-1962. doi: 10.1111/1462-2920.12468

    [72]

    MANZANO J I, GARCIA-HERNANDEZ R, CASTANYS S, et al. A new abc half-transporter in leishmania major is involved in resistance to antimony[J]. Antimicrobial Agents and Chemotherapy, 2013, 57(8):3719-3730. doi: 10.1128/AAC.00211-13

    [73]

    GHOSH M, SHEN J, ROSEN B P. Pathways of As(Ⅲ) detoxification in Saccharomyces cerevisiae[J]. Proceedings of the National Academy of Sciences of the United States of America, 1999, 96(9):5001-5006. doi: 10.1073/pnas.96.9.5001

    [74]

    GOURBAL B, SONUC N, BHATTACHARJEE H, et al. Drug uptake and modulation of drug resistance in Leishmania by an aquaglyceroporin[J]. Journal of Biological Chemistry, 2004, 279(30):31010-31017. doi: 10.1074/jbc.M403959200

    [75]

    MARQUIS N, GOURBAL B, ROSEN B P, et al. Modulation in aquaglyceroporin AQP1 gene transcript levels in drug-resistant Leishmania[J]. Molecular Microbiology, 2005, 57(6):1690-1699. doi: 10.1111/j.1365-2958.2005.04782.x

    [76]

    BROCHU C, WANG J Y, ROY G, et al. Antimony uptake systems in the protozoan parasite Leishmania and accumulation differences in antimony-resistant parasites[J]. Antimicrobial Agents and Chemotherapy, 2003, 47(10):3073-3079. doi: 10.1128/AAC.47.10.3073-3079.2003

    [77]

    NGUYEN V K, CHOI W, YU J, et al. Microbial oxidation of antimonite and arsenite by bacteria isolated from antimony-contaminated soils[J]. International Journal of Hydrogen Energy, 2017, 42(45):27832-27842. doi: 10.1016/j.ijhydene.2017.08.056

    [78]

    LI J X, ZHANG Y X, ZHENG S L, et al. Anaerobic bacterial immobilization and removal of toxic Sb(Ⅲ) coupled with Fe(Ⅱ)/Sb(Ⅲ) oxidation and denitrification[J]. Frontiers in Microbiology, 2019, 10:1-11. doi: 10.3389/fmicb.2019.00001

    [79]

    SHI Z J, CAO Z, QIN D, et al. Correlation models between environmental factors and bacterial resistance to antimony and copper[J]. Plos One, 2013, 8(10):1-11. http://pubmedcentralcanada.ca/pmcc/articles/PMC3812145/

    [80]

    LI P Z, LIN C Y, CHENG H G, et al. Contamination and health risks of soil heavy metals around a lead/zinc smelter in southwestern china[J]. Ecotoxicology and Environmental Safety, 2015, 113:391-399. doi: 10.1016/j.ecoenv.2014.12.025

    [81]

    LI J X, YANG B R, SHI M M, et al. Effects upon metabolic pathways and energy production by Sb(Ⅲ) and As(Ⅲ)/Sb(Ⅲ)-oxidase gene aioa in Agrobacterium tumefaciens GW4[J]. Plos One, 2017, 12(2):1-19. http://www.ncbi.nlm.nih.gov/pubmed/28241045

    [82]

    WANG D, ZHU F Q, WANG Q, et al. Disrupting ROS-protection mechanism allows hydrogen peroxide to accumulate and oxidize Sb(Ⅲ) to Sb(Ⅴ) in Pseudomonas stutzeri TS44[J]. Bmc Microbiology, 2016, 16:1-11. doi: 10.1186/s12866-015-0617-z

    [83]

    LEHR C R, KASHYAP D R, MCDERMOTT T R. New insights into microbial oxidation of antimony and arsenic[J]. Applied and Environmental Microbiology, 2007, 73(7):2386-2389. doi: 10.1128/AEM.02789-06

    [84]

    LI J X, YANG B R, SHI M M, et al. Abiotic and biotic factors responsible for antimonite oxidation in Agrobacterium tumefaciens GW4[J]. Scientific Reports, 2017, 7:1-11. doi: 10.1038/s41598-016-0028-x

    [85]

    LIU H, ZHUANG W, ZHANG S, et al. Global regulator iscr positively contributes to antimonite resistance and oxidation in Comamonas testosteroni S44[J]. Frontiers in molecular biosciences, 2015, 2(70):1-12. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=Doaj000004599935

    [86]

    TERRY L R, KULP T R, WIATROWSKI H, et al. Microbiological oxidation of antimony(Ⅲ) with oxygen or nitrate by bacteria isolated from contaminated mine sediments[J]. Applied and Environmental Microbiology, 2015, 81(24):8478-8488. doi: 10.1128/AEM.01970-15

    [87]

    BAI Y H, JEFFERSON W A, LIANG J S, et al. Antimony oxidation and adsorption by in-situ formed biogenic Mn oxide and Fe-Mn oxides[J]. Journal of Environmental Sciences, 2017, 54:126-134. doi: 10.1016/j.jes.2016.05.026

    [88]

    LI J X, WANG Q, LI M S, et al. Proteomics and genetics for identification of a bacterial antimonite oxidase in Agrobacterium tumefaciens[J]. Environmental Science & Technology, 2015, 49(10):5980-5989. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=c0b7f49ef186c23a839e26da760cc64a

    [89]

    FILELLA M, BELZILE N, CHEN Y W. Antimony in the environment:A review focused on natural waters Ⅱ. Relevant solution chemistry[J]. Earth-Science Reviews, 2002, 59(1-4):265-285. doi: 10.1016/S0012-8252(02)00089-2

    [90]

    KIRSCH R, SCHEINOST A C, ROSSBERG A, et al. Reduction of antimony by nano-particulate magnetite and mackinawite[J]. Mineralogical Magazine, 2008, 72(1):185-189. doi: 10.1180/minmag.2008.072.1.185

    [91]

    MITSUNOBU S, TAKAHASHI Y, SAKAI Y. Abiotic reduction of antimony(Ⅴ) by green rust (Fe4(Ⅱ)Fe2(Ⅲ)(OH)12SO4·3H2O)[J]. Chemosphere, 2008, 70(5):942-947. doi: 10.1016/j.chemosphere.2007.07.021

    [92]

    ABIN C A, HOLLIBAUGH J T. Dissimilatory antimonate reduction and production of antimony trioxide microcrystals by a novel microorganism[J]. Environmental Science & Technology, 2014, 48(1):681-688. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=c884859463932782cd725d15af30a893

    [93]

    KULP T R, MILLER L G, BRAIOTTA F, et al. Microbiological reduction of Sb(Ⅴ) in anoxic freshwater sediments[J]. Environmental Science & Technology, 2014, 48(1):218-226. https://www.freepatentsonline.com/8430596.html

    [94]

    LEUZ A K, MONCH H, JOHNSON C A. Sorption of Sb(Ⅲ) and Sb(Ⅴ) to goethite:Influence on Sb(Ⅲ) oxidation and mobilization[J]. Environmental Science & Technology, 2006, 40(23):7277-7282. http://www.zhangqiaokeyan.com/academic-journal-foreign_other_thesis/020412354406.html

    [95]

    HOCKMANN K, LENZ M, TANDY S, et al. Release of antimony from contaminated soil induced by redox changes[J]. Journal of Hazardous Materials, 2014, 275(30):215-221. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=a698968735e15e1f28b14f98f21dd28b

    [96]

    LAI C Y, WEN L L, ZHANG Y, et al. Autotrophic antimonate bio-reduction using hydrogen as the electron donor[J]. Water Research, 2016, 88:467-474. doi: 10.1016/j.watres.2015.10.042

    [97]

    WANG H W, CHEN F L, MU S Y, et al. Removal of antimony (Sb(Ⅴ)) from sb mine drainage:Biological sulfate reduction and sulfide oxidation-precipitation[J]. Bioresource Technology, 2013, 146:799-802. doi: 10.1016/j.biortech.2013.08.002

    [98]

    NGUYEN V K, LEE J U. Isolation and characterization of antimony-reducing bacteria from sediments collected in the vicinity of an antimony factory[J]. Geomicrobiology Journal, 2014, 31(10):855-861. doi: 10.1080/01490451.2014.901440

    [99]

    ABIN C A, HOLLIBAUGH J T. Transcriptional response of the obligate anaerobe Desulfuribacillus stibiiarsenatis MLFW-2T to growth on antimonate and other terminal electron acceptors[J]. Environmental Microbiology, 2019, 21(2):618-630. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=6a309950abbf2f142283413f59d7bacb

    [100]

    Lv LV P L, SHI L D, WANG Z, et al. Methane oxidation coupled to perchlorate reduction in a membrane biofilm batch reactor[J]. Science of the Total Environment, 2019, 667:9-15. doi: 10.1016/j.scitotenv.2019.02.330

    [101]

    SHI L D, WANG M, HAN Y L, et al. Multi-omics reveal various potential antimonate reductases from phylogenetically diverse microorganisms[J]. Applied Microbiology and Biotechnology, 2019, 103(21-22):9119-9129. doi: 10.1007/s00253-019-10111-x

    [102]

    SCHEINOST A C, ROSSBERG A, VANTELON D, et al. Quantitative antimony speciation in shooting-range soils by exafs spectroscopy[J]. Geochimica Et Cosmochimica Acta, 2006, 70(13):3299-3312. doi: 10.1016/j.gca.2006.03.020

    [103]

    CUI X D, WANG Y J, HOCKRNANN K, et al. Effect of iron plaque on antimony uptake by rice (oryza sativa l.)[J]. Environmental Pollution, 2015, 204:133-140. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=371804b39bf6dd95d848daedf54ac156

    [104]

    KARIMIAN N, JOHNSTON S G, BURTON E D. Antimony and arsenic behavior during Fe(Ⅱ)-induced transformation of jarosite[J]. Environmental Science & Technology, 2017, 51(8):4259-4268. http://smartsearch.nstl.gov.cn/paper_detail.html?id=bdf4a5dc38f44aefec048ade4c107836

    [105]

    KARIMIAN N, JOHNSTON S G, BURTON E D. Antimony and arsenic partitioning during Fe2+-induced transformation of jarosite under acidic conditions[J]. Chemosphere, 2018, 195:515-523. doi: 10.1016/j.chemosphere.2017.12.106

    [106]

    HOCKMANN K, TANDY S, LENZ M, ET AL, et al. Antimony leaching from contaminated soil under manganese- and iron-reducing conditions:Column experiments[J]. Environmental Chemistry, 2014, 11(6):624-631. doi: 10.1071/EN14123

    [107]

    BURTON E D, HOCKMANN K, KARIMIAN N, et al. Antimony mobility in reducing environments:The effect of microbial iron(Ⅲ)-reduction and associated secondary mineralization[J]. Geochimica Et Cosmochimica Acta, 2019, 245:278-289. doi: 10.1016/j.gca.2018.11.005

    [108]

    LEI M, TAO J, YANG R J, et al. Binding of Sb(Ⅲ) by Sb-tolerant Bacillus cereus cell and cell-goethite composite:Implications for sb mobility and fate in soils and sediments[J]. Journal of Soils and Sediments, 2019, 19(6):2850-2858. doi: 10.1007/s11368-019-02272-z

    [109]

    ANAYURT R A, SARI A, TUZEN M. Equilibrium, thermodynamic and kinetic studies on biosorption of Pb(Ⅱ) and Vd(Ⅱ) from aqueous solution by macrofungus (lactarius scrobiculatus) biomass[J]. Chemical Engineering Journal, 2009, 151(1-3):255-261. doi: 10.1016/j.cej.2009.03.002

    [110]

    DAS S K, DAS A R, GUHA A K. A study on the adsorption mechanism of mercury on aspergillus versicolor biomass[J]. Environmental Science & Technology, 2007, 41(24):8281-8287. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=0e4286e3c81343362c60bede4aaea3b8

    [111]

    SUN F H, WU F C, LIAO H Q, et al. Biosorption of antimony(Ⅴ) by freshwater cyanobacteria microcystis biomass:Chemical modification and biosorption mechanisms[J]. Chemical Engineering Journal, 2011, 171(3):1082-1090. http://www.sciencedirect.com/science/article/pii/S1385894711005493

    [112]

    GU J H, SUNAHARA G, DURAN R, et al. Sb(Ⅲ)-resistance mechanisms of a novel bacterium from non-ferrous metal tailings[J]. Ecotoxicology and Environmental Safety, 2019, 186:1-9. http://www.researchgate.net/publication/336589616_SbIII-resistance_mechanisms_of_a_novel_bacterium_from_non-ferrous_metal_tailings

    [113]

    ZHANG D Y, PAN X L, ZHAO L, et al. Biosorption of antimony (Sb) by the Cyanobacterium synechocystis sp[J]. Polish Journal of Environmental Studies, 2011, 20(5):1353-1358. http://smartsearch.nstl.gov.cn/paper_detail.html?id=9e221252721f6d45956946e5d2537a66

    [114]

    ZHANG D Y, PAN X L, MU G J. Biosorption of Sb(Ⅲ) to exopolymers from Cyanobacterium synechocystis sp.:A fluorescence and ftir study[J]. Polish Journal of Environmental Studies, 2012, 21(5):1497-1503. http://smartsearch.nstl.gov.cn/paper_detail.html?id=22c973a099cceee61c3270cfad4e9edd

    [115]

    CAI Y, LI X P, LIU D Y, et al. A novel Pb-resistant bacillus subtilis bacterium isolate for co-biosorption of hazardous Sb(Ⅲ) and Pb(Ⅱ):Thermodynamics and application strategy[J]. International Journal of Environmental Research and Public Health, 2018, 15(4):1-18. http://europepmc.org/articles/PMC5923744/

    [116]

    WU F C, SUN F H, WU S, et al. Removal of antimony(Ⅲ) from aqueous solution by freshwater cyanobacteria Microcystis biomass[J]. Chemical Engineering Journal, 2012, 183:172-179. doi: 10.1016/j.cej.2011.12.050

    [117]

    UNGUREANU G, FILOTE C, SANTOS S C R, et al. Antimony oxyanions uptake by green marine macroalgae[J]. Journal of Environmental Chemical Engineering, 2016, 4(3):3441-3450. http://www.sciencedirect.com/science/article/pii/S2213343716302731

    [118]

    UNGUREANU G, SANTOS S C R, VOLF I, et al. Biosorption of antimony oxyanions by brown seaweeds:Batch and column studies[J]. Journal of Environmental Chemical Engineering, 2017, 5(4):3463-3471. http://www.researchgate.net/publication/318198158_Biosorption_of_antimony_oxyanions_by_brown_seaweeds_batch_and_column_studies

    [119]

    WU H Y, CHEN W L, RONG X M, et al. Adhesion of Pseudomonas putida onto kaolinite at different growth phases[J]. Chemical Geology, 2014, 390:1-8. doi: 10.1016/j.chemgeo.2014.10.008

    [120]

    MOON E M, PEACOCK C L. Adsorption of Cu(Ⅱ) to ferrihydrite and ferrihydrite-bacteria composites:Importance of the carboxyl group for Cu mobility in natural environments[J]. Geochimica Et Cosmochimica Acta, 2012, 92:203-219. doi: 10.1016/j.gca.2012.06.012

    [121]

    DU H H, LIN Y P, CHEN W L, et al. Copper adsorption on composites of goethite, cells of Pseudomonas putida and humic acid[J]. European Journal of Soil Science, 2017, 68(4):514-523. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=10.1111/ejss.12430

    [122]

    FRANZBLAU R E, DAUGHNEY C J, SWEDLUND P J, et al. Cu(Ⅱ) removal by anoxybacillus flavithermus-iron oxide composites during the addition of Fe(Ⅱ)(aq)[J]. Geochimica Et Cosmochimica Acta, 2016, 172:139-158. doi: 10.1016/j.gca.2015.09.031

    [123]

    DOPP E, HARTMANN L M, FLOREA A M, et al. Environmental distribution, analysis, and toxicity of organometal(loid) compounds[J]. Critical Reviews in Toxicology, 2004, 34(3):301-333. doi: 10.1080/10408440490270160

    [124]

    FILELLA M. Alkyl derivatives of antimony in the environment[J]. Metal ions in life sciences, 2010, 7:267-301. http://www.ncbi.nlm.nih.gov/pubmed/20877810

    [125]

    BURRELL R E, CORKE C T, GOEL R G. Fungitoxicity of organoantimony and organobismuth compounds[J]. Journal of Agricultural and Food Chemistry, 1983, 31(1):85-88. doi: 10.1021/jf00115a023

    [126]

    ANDREWES P, KITCHIN K T, WALLACE K. Dimethylarsine and trimethylarsine are potent genotoxins in vitro[J]. Chemical Research in Toxicology, 2003, 16(8):994-1003. doi: 10.1021/tx034063h

    [127]

    DOPP E, HARTMANN L M, FLOREA A M, et al. Trimethylantimony dichloride causes genotoxic effects in chinese hamster ovary cells after forced uptake[J]. Toxicology in Vitro, 2006, 20(6):1060-1065. doi: 10.1016/j.tiv.2006.01.018

    [128]

    GEBEL T. Arsenic and antimony:Comparative approach on mechanistic toxicology[J]. Chemico-Biological Interactions, 1997, 107(3):131-144. doi: 10.1016/S0009-2797(97)00087-2

    [129]

    JENKINS R O, FORSTER S N, CRAIG P J. Formation of methylantimony species by an aerobic prokaryote:Flavobacterium sp[J]. Archives of Microbiology, 2002, 178(4):274-278. doi: 10.1007/s00203-002-0456-9

    [130]

    MICHALKE K, SCHMIDT A, HUBER B, et al. Role of intestinal microbiota in transformation of bismuth and other metals and metalloids into volatile methyl and hydride derivatives in humans and mice[J]. Applied and Environmental Microbiology, 2008, 74(10):3069-3075. doi: 10.1128/AEM.02933-07

    [131]

    GURLEYUK H, VANFLEETSTALDER V, CHASTEEN T G. Confirmation of the biomethylation of antimony compounds[J]. Applied Organometallic Chemistry, 1997, 11(6):471-483. doi: 10.1002/(SICI)1099-0739(199706)11:6<471::AID-AOC590>3.0.CO;2-H

    [132]

    ANDREWES P, CULLEN W R, POLISHCHUK E. Antimony biomethylation by Scopulariopsis brevicaulis:Characterization of intermediates and the methyl donor[J]. Chemosphere, 2000, 41(11):1717-1725. doi: 10.1016/S0045-6535(00)00063-1

    [133]

    ANDREWES P, CULLEN W R, POLISHCHUK E, et al. Antimony biomethylation by the wood rotting fungus Phaeolus schweinitzii[J]. Applied Organometallic Chemistry, 2001, 15(6):473-480. doi: 10.1002/aoc.131

    [134]

    JENKINS R O, CRAIG P J, GOESSLER W, et al. Biomethylation of inorganic antimony compounds by an aerobic fungus:Scopulariopsis brevicaulis[J]. Environmental Science & Technology, 1998, 32(7):882-885. http://pubs.acs.org/doi/10.1021/es970824p

    [135]

    CRAIG P J, JENKINS R O, DEWICK R, et al. Trimethylantimony generation by Scopulariopsis brevicaulis during aerobic growth[J]. Science of the Total Environment, 1999, 229(1-2):83-88. doi: 10.1016/S0048-9697(99)00063-7

    [136]

    WEHMEIER S, FELDMANN J. Investigation into antimony mobility in sewage sludge fermentation[J]. Journal of Environmental Monitoring, 2005, 7(12):1194-1199. doi: 10.1039/b509538g

    [137]

    HARTMANN L M, CRAIG P J, JENKINS R O. Influence of arsenic on antimony methylation by the aerobic yeast Cryptococcus humicolus[J]. Archives of Microbiology, 2003, 180(5):347-352. doi: 10.1007/s00203-003-0600-1

    [138]

    ANDREWES P, CULLEN W R, FELDMANN J, et al. The production of methylated organoantimony compounds by Scopulariopsis brevicaulis[J]. Applied Organometallic Chemistry, 1998, 12(12):827-842. doi: 10.1002/(SICI)1099-0739(199812)12:12<827::AID-AOC797>3.0.CO;2-O

    [139]

    SMITH L M, MAHER W A, CRAIG P J, et al. Speciation of volatile antimony compounds in culture headspace gases of Cryptococcus humicolus using solid phase microextraction and gas chromatography-mass spectrometry[J]. Applied Organometallic Chemistry, 2002, 16(6):287-293. doi: 10.1002/aoc.303

    [140]

    DUESTER L, DIAZ-BONE R A, KOSTERS J, et al. Methylated arsenic, antimony and tin species in soils[J]. Journal of Environmental Monitoring, 2005, 7(12):1186-1193. doi: 10.1039/b508206d

  • 加载中

(3)

计量
  • 文章访问数:  2552
  • PDF下载数:  130
  • 施引文献:  0
出版历程
收稿日期:  2020-03-25

目录