蔗糖碳化物/海泡石复合材料制备工艺及响应面法优化

郑锡瀚, 马忻狄, 覃佳, 赵宇玲, 蓝丽红. 蔗糖碳化物/海泡石复合材料制备工艺及响应面法优化[J]. 矿产保护与利用, 2020, 40(4): 108-116. doi: 10.13779/j.cnki.issn1001-0076.2020.04.013
引用本文: 郑锡瀚, 马忻狄, 覃佳, 赵宇玲, 蓝丽红. 蔗糖碳化物/海泡石复合材料制备工艺及响应面法优化[J]. 矿产保护与利用, 2020, 40(4): 108-116. doi: 10.13779/j.cnki.issn1001-0076.2020.04.013
Xihan ZHEN, Xindi MA, Jia QIN, Yuling ZHAO, Lihong LAN. Preparation of Sucrose Carbide/Sepiolite Composite and the Optimization of Response Surface Methodology[J]. Conservation and Utilization of Mineral Resources, 2020, 40(4): 108-116. doi: 10.13779/j.cnki.issn1001-0076.2020.04.013
Citation: Xihan ZHEN, Xindi MA, Jia QIN, Yuling ZHAO, Lihong LAN. Preparation of Sucrose Carbide/Sepiolite Composite and the Optimization of Response Surface Methodology[J]. Conservation and Utilization of Mineral Resources, 2020, 40(4): 108-116. doi: 10.13779/j.cnki.issn1001-0076.2020.04.013

蔗糖碳化物/海泡石复合材料制备工艺及响应面法优化

  • 基金项目:
    广西生物多糖分离纯化及改性研究平台建设(桂科ZY18076005);广西民族大学研究生教育创新计划项目重点项目(gxun-chxzs2018051)
详细信息
    作者简介: 郑锡瀚(1995-), 男, 汉族, 广东饶平人, 在读硕士, 从事矿物复合材料制备及应用
    通讯作者: 蓝丽红, lanlihong2004@163.com
  • 中图分类号: TD985;Q532

Preparation of Sucrose Carbide/Sepiolite Composite and the Optimization of Response Surface Methodology

More Information
  • 以蔗糖和海泡石为实验原材料,利用水热碳化法制备出新型蔗糖碳化物/海泡石复合材料,冷冻真空干燥法干燥样品。利用XRD、IR、SEM、BET对样品进行表征。以亚甲基蓝作为吸附质,通过单因素和响应面法优化制备的工艺。综合实验结果表明,蔗糖碳化物能够成功的被负载到海泡石表面制备出蔗糖碳化物/海泡石复合材料,其制备最优工艺条件为:蔗糖与海泡石质量比为3.5:1.0,碳化时间为8 h,碳化温度为220℃,对亚甲基蓝的最优吸附量为42.983 mg/g;各因素对复合材料吸附亚甲基蓝性能的影响顺序为:蔗糖与海泡石质量比>碳化时间>碳化温度,并且发现复合材料对亚甲基蓝的吸附效果优于现有的文献报导值。
  • 加载中
  • 图 1  蔗糖与海泡石质量比对复合材料吸附量的影响趋势曲线

    Figure 1. 

    图 2  碳化时间对复合材料吸附量的影响趋势曲线

    Figure 2. 

    图 3  碳化温度对复合材料吸附量的影响趋势曲线

    Figure 3. 

    图 4  复合材料对亚甲基蓝的吸附量实测值与预测值对比

    Figure 4. 

    图 5  质量比与碳化时间(AB)间交互作用的3D响应曲面图与等值线图

    Figure 5. 

    图 6  质量比与碳化温度(AC)间交互作用的3D响应曲面图与等值线图

    Figure 6. 

    图 7  碳化时间与碳化温度(BC)间交互作用的3D响应曲面图与等值线图

    Figure 7. 

    图 8  三种材料的SEM图:a天然海泡石(50K倍电镜下);b蔗糖碳化物(10K倍电镜下);c蔗糖碳化物/海泡石复合材料(50K倍电镜下)

    Figure 8. 

    图 9  海泡石(a)、蔗糖碳化物/海泡石复合材料(b)和蔗糖碳化物(c)红外光谱分析

    Figure 9. 

    图 10  海泡石、蔗糖碳化物、蔗糖碳化物/海泡石复合材料的XRD谱图

    Figure 10. 

    图 11  海泡石与蔗糖碳化物/海泡石复合材料的N2吸附-脱附等温线

    Figure 11. 

    图 12  海泡石与蔗糖碳化物/海泡石海泡石复合材料的孔径分布情况

    Figure 12. 

    表 1  响应面试验因素水平设计表

    Table 1.  Design table of factors and levels of response surface experiments

    Factor Level
    -1 0 1
    A 3.0:1.0 3.5:1.0 4.0:1.0
    B/h 4 8 12
    C/℃ 210 220 230
    下载: 导出CSV

    表 2  响应面试验设计及相对应响应值表

    Table 2.  Response surface experimental design table and corresponding response values

    SN A/(g·g-1) B/h C/℃ Adsorption capacity/(mg·g-1)
    1 0 0 0 43.081 7
    2 0 -1 1 42.532 3
    3 -1 -1 0 42.019 1
    4 -1 0 -1 42.243 9
    5 0 1 -1 42.793 2
    6 1 -1 0 42.123 0
    7 1 0 -1 42.333 0
    8 1 0 1 42.250 3
    9 0 -1 -1 42.547 2
    10 0 1 1 42.581 1
    11 -1 1 0 41.997 9
    12 0 0 0 43.032 9
    13 -1 0 1 42.163 3
    14 0 0 0 43.005 3
    15 0 0 0 43.020 1
    16 1 1 0 42.165 4
    17 0 0 0 43.035 0
    下载: 导出CSV

    表 3  响应面试验数据方差分析表

    Table 3.  Analysis of data variance of response surface experiments

    Variance
    source
    Sum of
    squares
    df Mean
    square
    F value P value
    Model 2.36 9 0.26 144.48 < 0.0001 significant
    A 0.069 1 0.069 38.14 0.0005 **
    B 0.035 1 0.035 19.20 0.0032 **
    C 0.012 1 0.012 6.42 0.0390 *
    AB 0.019 1 0.019 10.46 0.0144 *
    AC 0.00171 1 0.00171 0.94 0.3642
    BC 0.009722 1 0.009722 5.35 0.0539
    A2 1.65 1 1.65 906.01 < 0.0001 **
    B2 0.33 1 0.33 182.42 < 0.0001 **
    C2 0.084 1 0.084 46.13 0.0003 **
    Residual 0.013 7 0.001816
    Lack of Fit 0.009423 3 0.003141 3.82 0.1141 Not significant
    Pure Error 0.003289 4 0.0008224
    Cor Total 2.37 16
    注:表中*代表显著(P值<0.05);**代表极显著(P值<0.01)。
    下载: 导出CSV

    表 4  验证试验结果

    Table 4.  Results of verification experiments

    SN Adsorption capacity/(mg·g-1) Average adsorption capacity/(mg·g-1)
    1 42.897
    2 43.069 42.983
    3 42.982
    下载: 导出CSV
  • [1]

    鲁旖, 仇丹, 章凯丽.海泡石吸附剂的应用研究进展[J].宁波工程学院学报, 2016(1):17-22. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=668506081

    [2]

    李春生, 吴国霖, 徐传云.海泡石基催化材料的应用[J].中国非金属矿工业导刊, 2014(1):10-12. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgfjskgydk201401004

    [3]

    梁学峰.黏土矿物表面修饰及其吸附重金属离子的性能规律研究[D].天津市: 天津大学.2015.

    [4]

    王雪琴, 李珍, 杨友生, 等.海泡石的改性及应用研究现状[J].中国非金属矿工业导刊, 2003(3):11-14. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgfjskgydk200303003

    [5]

    李春生, 吴国霖, 徐传云.海泡石基催化材料的应用[J].中国非金属矿工业导刊, 2014(1):10-12. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgfjskgydk201401004

    [6]

    徐灵舒.凹凸棒粘土/碳复合材料的制备及其水污染处理应用初步研究[D].扬州市: 扬州大学.2013.

    [7]

    杨松, 黄辉, 龚青涛, 等.磁性/碳纳米复合材料的制备及其在污水处理方面的应用[J].化工技术与开发, 2018, 47(12):49-53. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gxhg201812014

    [8]

    胡盛, 杜梦江, 周红艳, 等.凹凸棒石/C复合材料的制备及其吸附性能研究[J].非金属矿, 2018(4):99-102. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=fjsk201804031

    [9]

    Li M, Li W, Liu S, et al. Control of the morphology and chemical properties of carbon spheres prepared from glucose by a hydrothermal method[J]. Journal of Materials Research, 2012, 27(8): 1117-1123. doi: 10.1557/jmr.2011.447

    [10]

    魏静, 褚云, 蒋国民, 等.水热碳化法制备碳微球[J].功能材料, 2014(S2):136-139. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gncl2014z2029

    [11]

    Wang Y, Liu S, Hong X, et al. Microporous Carbon Materials Derived From Sucrose as Sulfur Host for Lithium Sulfur Batteries[J]. IOP Conference Series Materials Science and Engineering, 2018, 394(4):042031. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=IOP_9439836

    [12]

    Bedin K C, André L. Cazetta, Souza I P A F, et al. Porosity enhancement of spherical activated carbon: Influence and optimization of hydrothermal synthesis conditions using response surface methodology[J]. Journal of Environmental Chemical Engineering, 2018, 6(1). http://www.sciencedirect.com/science/article/pii/S221334371730708X

    [13]

    Yao C, Shin Y, Wang L Q, et al. Hydrothermal dehydration of aqueous fructose solutions in a closed system[J]. The Journal of Physical Chemistry C, 2007, 111(42): 15141-15145. doi: 10.1021/jp074188l

    [14]

    Sevilla Solís, Marta, Fuertes Arias A B, et al. The production of carbon materials by hydrothermal carbonization of cellulose[J]. Carbon, 2009, 47(9): 2281-2289. doi: 10.1016/j.carbon.2009.04.026

    [15]

    Cui X, Antonietti M, Yu S H, et al. Structural effects of iron oxide nanoparticles and iron ions on the hydrothermal carbonization of starch and rice carbohydrates[J]. Small, 2006, 2(6): 756-759. doi: 10.1002/smll.200600047

    [16]

    Demir-Cakan R, Baccile N, Antonietti M, et al. Carboxylate-Rich carbonaceous materials via One-Step hydrothermal carbonization of glucose in the presence of acrylic acid[J]. Chemistry of Materials, 2009, 21(3): 484-490. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=d6eca33f795a96820fc41db75cc6508e

    [17]

    Qi Y, Zhang M, Qi L, et al. Mechanism for the formation and growth of carbonaceous spheres from sucrose by hydrothermal carbonization[J]. RSC Advances, 2016, 6: 102428. doi: 10.1039/C6RA21312J

    [18]

    李杨瑞.关于广西的甘蔗育种[J].广西糖业, 2019(3):3-9. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gxzt201903001

    [19]

    李海云, 王永垒, 许涛, 等.水热碳化法合成蔗糖基碳材料的工艺研究[J].齐齐哈尔大学学报(自然科学版), 2018(5):47-53. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=qqhrdxxb201805011

    [20]

    徐升, 方亮, 弓晓峰, 等.响应面分析法优化微波辅助硫酸亚铁改性海泡石制备工艺[J].功能材料, 2016(2):2235-2241. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gncl201602046

    [21]

    刘相廷, 李俊锋, 李培雅, 等.膨润土纳米片水凝胶的制备及其吸附性能研究[J].矿产保护与利用, 2019, 39(4):144-150, 158. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=kcbhyly201904028

    [22]

    Zhu P, Ren Z, Wang R, et al. Preparation and visible photocatalytic dye degradation of Mn-TiO2/sepiolite photocatalysts [J]. Frontiers of Materials Science, 2020, 14 (07): 33-42. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zggdxxxswx-clkx202001004

    [23]

    Marrakchi F, Khanday W A, Asif M, et al. Cross-linked chitosan/sepiolite composite for the adsorption of methylene blue and reactive orange 16 [J]. International Journal of Biological Macromolecules, 2016: S0141813016307206. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ef7eec0dec12317e379c9034136c88f6

    [24]

    邢新艳, 陈得军, 赵东方, 等.C/海泡石复合吸附剂的水热法制备及其对水中亚甲基蓝的吸附研究[J].化工新型材料, 2013(2):115-117. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hgxxcl201302039

    [25]

    Liang W, Meng-Lin C, Xing-Cun H E, et al. Adsorption of Methylene Blue onto Activated Sepiolite[J]. The Chinese Journal of Process Engineering, 2009, 9: 1095-1098. http://en.cnki.com.cn/article_en/cjfdtotal-hgyj200906013.htm

    [26]

    Liu RR, Zhijiang J I, Wang J, et al. Mesocrystalline TiO2/sepiolite composites for the effective degradation of methyl orange and methylene blue[J]. Frontiers of Materials Science, 2018, 12(3):292-303. doi: 10.1007/s11706-018-0429-9

    [27]

    Li J, Hong-Yan Z, Sheng X, et al. Facile preparation of sepiolite@LDH composites for the visible-light degradation of organic dyes[J]. Chinese Journal of Catalysis, 2018, 39(11):1832-1841. doi: 10.1016/S1872-2067(18)63120-1

  • 加载中

(12)

(4)

计量
  • 文章访问数:  1690
  • PDF下载数:  211
  • 施引文献:  0
出版历程
收稿日期:  2020-03-25

目录