Behaviors of Selenium in Rhenium Recovery Process by Ion Exchange Method from Spraying Water
-
摘要:
研究了离子交换法以钼冶炼烟气淋洗液中回收铼的过程中硒的走向,并研究了硒对离子交换树脂吸附性能的影响。试验结果表明,在离子交换法吸附铼的过程中,淋洗液中的SeO32-也被同时被吸附到树脂上,铼先于硒达到饱和吸附;解吸附铼的过程中,大部分的硒也被解吸附,并富集210倍;解吸液沉淀物XRD分析表明,解吸液中被富集的硒,部分会被还原为单质。解吸液中的胶状硒黏附在离子交换树脂上后,导致树脂变为红棕色,并影响其对铼的吸附性能。采用脱硒药剂A可将树脂上的硒脱除,脱硒后树脂对铼的吸附性能得到一定的恢复。
Abstract:In this article the behavior characteristics of selenium in the process of rhenium recovery by ion exchange and the effect of selenium on the adsorption properties of ion exchange resin were discussed. Results showed that in the adsorption process of rhenium, most of selenium, dissolving in the spraying water, was adsorbed by ion exchange resin. The saturated adsorption of rhenium was apt to achieve than selenium. In the desorption process of rhenium, most of selenium was eluted and enriched as SeO32-. XRD analysis of deposit in desorption solution showed that part of SeO32- was reduced to elemental selenium soon. As a result of adhering to resin by the colloidal elemental selenium, the color of resin changed to brown red and the adsorption performance of resin decreased. The elemental selenium adhering to resin could be eluted by reagent A and the adsorption performance of resin, which had been treated by reagent A, gained a certain amount of recovery.
-
Key words:
- rhenium /
- ion exchange /
- spraying water /
- selenium /
- adsorption /
- desorption
-
-
表 1 某冶炼厂淋洗液化学成分
Table 1. Main chemical composition of spraying water
composition Mo Re S Cl- Ca2+ F- Al3+ Fe2+ Cu2+ Mg2+ concentration/(g·L-1) 0.58 0.041 49.70 0.50 0.39 12.13 0.095 0.52 0.000 73 0.12 表 2 不同批次淋洗液中硒含量
Table 2. Selenium content in different batch spraying water
Sample number 1 2 3 4 5 Average value Se/(mg·L-1) 2.94 3.02 2.78 3.20 3.64 3.12 表 3 酸泥X荧光分析结果
Table 3. XRF analyses of deposit in spraying water
Composition SeO2 SO3 MoO3 SiO2 MgO Al2O3 Fe2O3 P2O5 Content/% 44.1 23.3 21.8 9.18 0.63 0.41 0.21 0.12 表 4 解吸液主要化学成分
Table 4. Main chemical composition of desorption solution
Composition Re S Se Concentration/(g·L-1) 8.14 3.87 0.63 表 5 解吸液沉淀物X荧光分析
Table 5. XRF analysis of deposit in desorption solution
Composition SeO2 SiO2 SO3 ReO2 MgO Al2O3 MoO3 F Fe2O3 Content/% 80.5 8.1 5.74 1.62 1.07 1.14 0.492 0.328 0.109 表 5 新树脂主要化学成分
Table 5. Main chemical composition of new resin
/% Composition C S Cl Spot 1 94.54 3.09 2.37 表 6 解吸附后树脂主要化学成分
Table 6. Main chemical composition of eluted resin
/% Element C Na Se Si S Cl Spot 1 94.19 0.88 0.51 2.19 1.3 0.92 Spot 2 96.36 0.5 0.86 0.61 1.06 0.6 Spot 3 94.61 0.88 1.87 0.69 1.26 0.69 表 7 新树脂与工业树脂吸附性能对比
Table 7. Differences of adsorption performance between new resin and used resin
Resin type 吸附前液/(mg·L-1) 吸附后液/(mg·L-1) 吸附率/% New resin 41.18 6.59 84.00 Used resin 41.18 8.10 74.88 Resin after treating 41.18 7.13 82.69 -
[1] 黄翀, 陈其慎, 李颖, 等.2030年全球及中国铼资源需求刍议[J].中国矿业.2014, 23(9): 9-11.
[2] SHARIAT M H, HASSANI M. Rhenium recovery from Sarcheshmeh molybdenite concentrate[J]. Journal of Materials Processing Technology, 1998, 74(1-3):243-250. http://www.sciencedirect.com/science/article/pii/S092401369700277X
[3] ABISHEVA Z S, ZAGORODNYAYA A N, BEKTURGANOV N S. Review of technologies for rhenium recovery from mineral raw materials in Kazakhstan[J]. Hydrometallurgy, 2011, 109(1-2):1-8. http://www.sciencedirect.com/science/article/pii/S0304386X11001125
[4] KHOLMOGOROV A G, KONONOVA O N, KACHIN S V, et al. Ion exchange recovery and concentration of rhenium from salt solutions[J]. Hydrometallurgy, 1999, 51(1):19-35. http://www.sciencedirect.com/science/article/pii/S0304386X98000644
[5] XIONG C H, YAO C P, WU X M. Adsorption of rhenium(VII) on 4-amino-1, 2, 4-triazole resin[J]. Hydrometallurgy, 2008, 90(2-4):221-226. http://www.sciencedirect.com/science/article/pii/S0304386X07002459
[6] 邹振球, 周勤俭.钼精矿石灰焙烧-N235萃取工艺提取钼铼[J].矿冶工程, 2002, 22(2):79-81. http://qikan.cqvip.com/Qikan/Article/Detail?id=6342579
[7] 季艳辉, 刘亮.简述降低废水COD方法[J].铜业工程, 2014(4):80-83. doi: 10.3969/j.issn.1009-3842.2014.04.024
[8] 宁阳坤.离子交换法回收钼冶炼废酸中钼和铼研究[D].郑州: 郑州大学, 2018.
[9] 刘红召.铼在辉钼矿焙烧过程中的逸出及淋洗液吸附机理研究[D].北京: 北京有色金属研究总院, 2019.
[10] 刘红召, 王力军, 张博, 等.一种弱碱性树脂对淋洗液中铼的静态吸附性能[J].稀有金属, 2017, 41(9):1028-1034. http://d.wanfangdata.com.cn/Periodical/xyjs201709012
[11] 张博, 刘红召, 王威, 等.弱碱性离子交换树脂从钼冶炼废酸中回收铼的研究[J].矿产保护与利用, 2016(4):41-46. http://kcbh.cbpt.cnki.net/WKD/WebPublication/paperDigest.aspx?paperID=1fdbf401-9ae4-4317-b5dd-9f579583df08
[12] 井小静, 赵恒勤, 刘红召, 等.钼精矿焙烧烟尘中回收铼的研究进展[J].有色金属(冶炼部分), 2018(11):42-46+55. doi: 10.3969/j.issn.1007-7545.2018.11.010
[13] 周令治, 陈少纯.稀散金属提取冶金[M].北京:冶金工业出版社, 2008:134-137.
[14] 李倩, 张宝, 申文前, 等.硒酸泥制备粗硒新工艺[J].中南大学学报(自然科学版), 2011, 42(8):2209-2214. http://d.wanfangdata.com.cn/Periodical/zngydxxb201108008
[15] 侯晓川, 肖连生, 高丛堦, 等.从镍钼矿冶炼烟尘浸出液中还原硒的热力学及应用[J].中国有色金属学报, 2010, 20(12):2431-2437. http://d.wanfangdata.com.cn/periodical/zgysjsxb201012024
-