Comprehensive Utilization Status and Development of Vanadium-bearing Solid Wastes
-
摘要:
含钒固废因其种类多、含有价元素、物相组成复杂,而成为资源回收和环境治理的重要研究对象。针对含钒固废亟待处理的问题,分析了我国含钒固废的种类、来源和资源特点,归纳了含钒固废的综合利用方式方法,包括提取有价元素、多组元综合利用及整体增值利用,总结了含钒固废在结构材料、钢铁冶金、功能材料、生态环保中的利用现状及发展,并指出了含钒固废在综合利用上存在的不足,提出含钒固废资源化利用的发展趋势,如制备地质聚合物、耐火材料、橡塑填料等实现零排放及整体增值的利用领域。
Abstract:It is well know that vanadium-bearing solid waste has become an important research object for resource recovery and environmental treatment, which due to its more kinds, valence elements and complex phase composition. According to the problem of urgent treatment of vanadium containing solid waste, the types and sources, as well as the resource characteristics of dvanadium-bearing solid wastes in China, were analyzed.The main methods of high-value utilization of vanadium-bearing solid wastes were concluded, including the extraction of valuable elements, multi-component comprehensive utilization and overall value-added utilization; The paper also summarized the utilization status and development of the application of vanadium-bearing solid waste in the field of structural materials, iron and steel metallurgy, functional materials, ecological and environmental protection. In addition, the problems existing in the waste comprehensive utilization of vanadium containing solid waste were given. The resource processing development trend of vanadium containing solid waste was put forwards, such as expanding to the preparation of geopolymer, refractory, rubber and plastic filler, and other utilization fields with zero discharge and high additional value.
-
Key words:
- vanadium-bearing solid wastes /
- utilization status /
- development trend
-
-
图 2 某提钒尾渣碳热还原法回收有价元素工艺流程[32]
Figure 2.
表 1 河钢承钢含钒固废成分及产生量
Table 1. Composition and production of vanadium chemical and metallurgical solid waste of HBIS Group Cheng Steel
Solid waste Content/% Production/(t·a-1) Al2O3 CaO Fe2O3 SiO2 V2O5 MgO Na2O TiO2 Cr2O3 Vanadium tailings 2.18 - 47.14 20.41 1.75 2.63 6.87 11.95 4.32 100 000 Vanadium mud 15.43 2.44 13.26 26.08 17.27 1.08 14.6 4.32 1.01 3 500 表 2 含钒固废制备功能性高附加值产品
Table 2. Preparation of functional high value-added products from vanadium-bearing solid waste
含钒固废 资源特点 整体增值利用 含钒冶炼渣 钒铁渣 Al2O3和MgO含量大于90% 耐火材料、调湿材料 含钒钢渣 Ca、Si、Al含量高、硅酸盐相为主 水泥混合材、陶粒 高碱度、含Mn、V等金属氧化物 脱硫吸收浆 提钒尾渣 页岩提钒尾渣 SiO2和Al2O3含量可达85%,以石英、长石类矿物为主,为粉末状 保温材料、微晶玻璃、地质聚合物、多孔陶瓷、橡塑填料 富钒渣提钒尾渣 含有90%的Fe、Mn、Ti、Cr氧化物 钒钛黑瓷、远红外涂料 富含V、Mn、Ti等元素 合金添加剂 Fe、Si含量较高 白炭黑、烧结矿原料 含钒废催化剂 V、Mo、W、Ti等活性氧化物含量高 催化材料 含钒污泥 含大量TFe和MFe,钒含量可达20% 提钒配碱、转炉冷却剂 -
[1] R.R MOSKALYK, ALFANTAZI A M. Processing of vanadium:a review[J]. Minerals Engineering, 2003, 16(9):793-805. http://www.onacademic.com/detail/journal_1000035019530610_6297.html
[2] LI HY, WANG CJ, YUAN YH, et al. Magnesiation roasting-acid leaching:A zero-discharge method for vanadium extraction from vanadium slag[J]. Journal of Cleaner Production, 2020, 260:121091. http://www.sciencedirect.com/science/article/pii/S0959652620311380
[3] SHI Y, EZE C, XIONG B, et al. Recent development of membrane for vanadium redox flow battery applications:A review[J]. Applied Energy, 2019, 238(MAR.15):202-224. http://www.sciencedirect.com/science/article/pii/S0306261918319081
[4] ZHANG Y M, BAO S X, LIU T, et al. The technology of extracting vanadium from stone coal in China:History, current status and future prospects[J]. Hydrometallurgy, 2011, 109(1):116-124. http://www.sciencedirect.com/science/article/pii/S0304386X11001393
[5] QU S, GUO Y, MA Z, et al. Implications of China's foreign waste ban on the global circular economy[J]. Resources, Conservation and Recycling, 2019, 144:252-255. http://www.sciencedirect.com/science/article/pii/S0921344919300047
[6] GLADYSHEV S V, AKCIL A, ABDULVALIYEV R A, et al. Recovery of vanadium and gallium from solid waste by-products of Bayer process[J]. Minerals Engineering, 2015, 74:91-98. http://www.sciencedirect.com/science/article/pii/S0892687515000321
[7] LI HY, WANG CJ, LIN MM, et al. Green one-step roasting method for efficient extraction of vanadium and chromium from vanadium-chromium slag[J]. Powder Technology, 2020, 360:503-508.
[8] 陈书锐, 杨绍利, 马兰.含钒钢渣提钒研究现状[J].矿产保护与利用, 2019, 39(3):69-74. http://kcbh.cbpt.cnki.net/WKD/WebPublication/paperDigest.aspx?paperID=565380af-9088-4858-9b1d-0b27ea1d61a2
[9] 孟利鹏, 赵楚, 王少娜, 等.国内提钒尾渣再提钒技术研究进展[J].钢铁钒钛, 2015, 36(3):49-56. http://www.cqvip.com/QK/91009X/20153/665463162.html
[10] 胡芳芳, 张一敏, 陈铁军, 等.石煤提钒尾渣制备地聚合物的试验研究[J].硅酸盐通报, 2013, 32(12):2449-2454. http://www.cnki.com.cn/Article/CJFDTotal-GSYT201312012.htm
[11] 赵备备, 李兰杰, 柳林, 等.废钒触媒提钒工艺研究[J].矿产综合利用, 2019(6):80-83. http://www.cnki.com.cn/Article/CJFDTotal-KCZL201906018.htm
[12] FERELLA F. A review on management and recycling of spent selective catalytic reduction catalysts[J]. Journal of Cleaner Production, 2020, 246:118990.1-118990.19. http://www.zhangqiaokeyan.com/academic-journal-foreign_other_thesis/0204113707809.html
[13] ZHAO Z, GUO M, ZHANG M. Extraction of molybdenum and vanadium from the spent diesel exhaust catalyst by ammonia leaching method[J]. Journal of Hazardous Materials, 2015, 286:402-409. http://europepmc.org/abstract/med/25603289
[14] 李兰杰, 赵备备, 高明磊, 等.钒化工冶金固废资源化清洁利用[J].过程工程学报, 2019, 19(S1):99-108. http://www.cnki.com.cn/Article/CJFDTotal-HGYJ2019S1014.htm
[15] NAVARRO R, GUZMAN J, SAUCEDO I, et al. Vanadium recovery from oil fly ash by leaching, precipitation and solvent extraction processes[J]. Waste Management, 2007, 27(3):425-438. http://europepmc.org/abstract/MED/16563726
[16] 蔡永红, 赵昌明, 宁哲, 等.熔融Na2CO3体系中含钒钢渣焙烧过程研究[J].矿冶工程, 2017, 37(6):76-79. http://www.cqvip.com/QK/93291X/20176/674724300.html
[17] WEN J, JIANG T, GAO H, et al. An efficient utilization of chromium-containing vanadium tailings:Extraction of chromium by soda roasting-water leaching and preparation of chromium oxide[J]. Journal of Environmental Management, 2019, 244:119-126. http://www.sciencedirect.com/science/article/pii/S0301479719306358
[18] YANG B, ZHOU J, WANG W, et al. Extraction and separation of tungsten and vanadium from spent V2O5-WO3/TiO2 SCR catalysts and recovery of TiO2 and sodium titanate nanorods as adsorbent for heavy metal ions[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects, 2020, 601:124963.
[19] 马致远, 刘勇, 周吉奎, 等.碱式焙烧-水浸法回收废催化剂中钒钼的试验研究[J].矿冶, 2019, 28(2):82-86. http://www.cnki.com.cn/Article/CJFDTotal-KYZZ201902018.htm
[20] 高明磊, 陈东辉, 李兰杰, 等.含钒钢渣中钒在KOH亚熔盐介质中溶出行为[J].过程工程学报, 2011, 11(5):761-766. http://d.wanfangdata.com.cn/Periodical/hgyj201105007
[21] WANG ZH, ZHENG SL, WANG SN, et al. Research and prospect on extraction of vanadium from vanadium slag by liquid oxidation technologies[J]. Transactions of Nonferrous Metals Society of China, 2014, 24(5):1273-1288. http://www.sciencedirect.com/science/article/pii/S1003632614631897
[22] 王少娜, 王亚茹, 杜浩, 等.活性炭强化氧化亚熔盐介质中钒渣分解机理[J].中国有色金属学报, 2017, 27(8):1729-1737. http://www.cqvip.com/QK/97361X/20178/90898890504849554856485052.html
[23] 高明磊, 周欣, 王海旭, 等.含钒钢渣选择性预处理及提钒工艺[J].中国有色金属学报, 2019, 29(11):2635-2644. http://www.cnki.com.cn/Article/CJFDTotal-ZYXZ201911020.htm
[24] 邓志敢, 魏昶, 李兴彬, 等.钒钛磁铁矿提钒尾渣浸取钒[J].中国有色金属学报, 2012, 22(6):1770-1777. http://www.cqvip.com/QK/97361X/20126/42577145.html
[25] 李秀敏.攀钢提钒尾渣二次提钒研究[D].武汉: 武汉理工大学, 2013.
[26] 张兵兵, 于丹丹, 王芳, 等.废脱硝催化剂中五氧化二钒回收工艺研究[J].河南科学, 2016, 34(6):866-870. http://www.cqvip.com/QK/91618X/20166/669107092.html
[27] GOMES H I, FUNARI V, MAYES W M, et al. Recovery of Al, Cr and V from steel slag by bioleaching:Batch and column experiments[J]. Journal of Environmental Management, 2018, 222:30-36. http://europepmc.org/abstract/MED/29800862
[28] WANG S, XIE Y, YAN W, et al. Leaching of vanadium from waste V2O5-WO3/TiO2 catalyst catalyzed by functional microorganisms[J]. Science of The Total Environment, 2018, 639:497-503. http://europepmc.org/abstract/MED/29800843
[29] 曾冠武, 郝建璋.提钒尾渣脱钠技术研究[J].钢铁钒钛, 2019, 40(1):78-82, 104.
[30] 赵昌明, 李博洋, 蔡永红, 等.碳热还原含钒钢渣磷与钒的分离研究[J].矿产综合利用, 2018(06):106-110. http://www.cqvip.com/QK/97871X/20186/6100068931.html
[31] XIANG J Y, HUANG Q Y, WEI L, et al. Recovery of tailings from the vanadium extraction process by carbothermic reduction method:Thermodynamic, experimental and hazardous potential assessment[J]. Journal of Hazardous Materials, 2018, 357:128-137. http://www.ncbi.nlm.nih.gov/pubmed/29870897
[32] ZHANG B, LIU C, LIU Z, et al. Remediation of the vanadium slag processing residue and recovery of the valuable elements[J]. Process Safety and Environmental Protection, 2019, 128:362-371. http://www.sciencedirect.com/science/article/pii/S0957582019301235
[33] LUO Y, BAO S, ZHANG Y.Preparation of one-part geopolymeric precursors using vanadium tailing by thermal activation[J]. Journal of the American Ceramic Society, 2020, 103(2):779-783. http://onlinelibrary.wiley.com/doi/10.1111/jace.16835/abstract
[34] 杨爱江, 王其, 吴维, 等.利用石煤提钒废渣制备CAS系微晶玻璃的研究[J].硅酸盐通报, 2013, 32(3):528-532. http://www.cqvip.com/QK/90627X/20133/45285473.html
[35] 李亮, 彭富昌.浇注法制备提钒尾渣多孔陶瓷试验研究[J].钢铁钒钛, 2017, 38(3):78-82. http://d.wanfangdata.com.cn/Periodical/gtft201703015
[36] 李建军, 韵晓桐, 周维政.熔盐法从提钒尾渣中制取白炭黑的研究[J].沈阳理工大学学报, 2019, 38(3):40-43, 48. http://d.wanfangdata.com.cn/periodical/sygyxyxb201903008
[37] LU M, CHEN T, ZHANG Y, et al. Facile synthesis of polypropylene composites by filling with modified vanadium tailing[J]. Results in Physics, 2017, 7:1689-1697. http://www.sciencedirect.com/science/article/pii/s2211379717303960
[38] CHEN Y, KO M, CHANG J, et al. Recycling of desulfurization slag for the production of autoclaved aerated concrete[J]. Construction and Building Materials, 2018, 158(15):132-140. http://www.sciencedirect.com/science/article/pii/S0950061817320032
[39] 武炜, 田新喜, 郑果.钒渣在生产硅锰合金矿热炉中的应用[J].黑龙江冶金, 2015, 35(3):38-39. http://www.cnki.com.cn/Article/CJFDTotal-HLYJ201503015.htm
[40] 孙路恩, 马文会, 雷云.硅铝合金还原含钛提钒尾渣制备Ti-Si-(Al)合金[J].过程工程学报, 2017, 17(3):578-583. http://www.cnki.com.cn/Article/CJFDTotal-HGYJ201703024.htm
[41] 胡鹏, 饶家庭, 谢洪恩, 等.烧结配加钙法提钒尾渣试验研究[J].烧结球团, 2015, 40(4):44-47, 50. http://qikan.cqvip.com/Qikan/Article/Detail?id=665923542
[42] 李兰杰, 赵备备, 王海旭, 等.提钒尾渣高效脱碱及配矿炼铁工艺[J].过程工程学报, 2017, 17(1):138-143. http://d.wanfangdata.com.cn/Periodical/hgyj201701021
[43] 郝建璋.钒铁渣耐火浇注料的研制与应用[J].耐火材料, 2011, 45(6):433-435. http://www.cqvip.com/QK/92299X/20116/40256272.html
[44] 张君博, 徐自伟, 张雯文, 等.钒铁炉渣对矾土基自流浇注料性能的影响[J].硅酸盐通报, 2017, 36(2):738-741. http://d.wanfangdata.com.cn/Periodical/gsytb201702057
[45] 陆勇, 杨爱江, 张林晓, 等.钙化焙烧提钒废渣代黏土配料煅烧水泥熟料试验[J].贵州大学学报(自然科学版), 2015, 32(1):119-122. http://www.cnki.com.cn/Article/CJFDTotal-GZDI201501025.htm
[46] 郝建璋, 刘安强, 马明龙.提钒尾渣远红外涂料性能研究[J].涂料工业, 2009, 39(9):13-15. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=tlgy200909004
[47] 马瑞华, 刘谦蜀.钒钛黑瓷太阳能应用于钛白废酸浓缩回用工程[J].给水排水, 2014(4):58-61. http://d.wanfangdata.com.cn/Periodical/jsps201404014
[48] 刘睿.基于钢渣的SCR脱硝催化剂的性能研究[D].上海: 上海交通大学, 2016.
[49] WANG Y, CHANG Z, BLAMO B J, et al. Preparation of Photocatalytic Zn3(VO4)2/ZnWO4 from Waste V2O5-WO3/TiO2 SCR Catalyst[J]. Waste and Biomass Valorization, 2016, 8(7):2423-2430. http://dx.doi.org/10.1007/s12649-016-9783-y
[50] MA A, LIU S, LI K, et al. Novel technology for hydrogen sulfide purification via the slurry prepared from roasted vanadium steel slag[J]. Chemical Engineering Journal, 2020, 394:124905. http://www.sciencedirect.com/science/article/pii/S1385894720308962
[51] 王洁, 刘树根, 宁平, 等.含钒钢渣低温钠化焙烧钒浸出效果及其焙砂湿法脱硫作用[J].环境工程学报, 2018, 12(11):3124-3130. http://www.zhangqiaokeyan.com/academic-journal-cn_chinese-journal-environmental-engineering_thesis/0201271220262.html
[52] 胡明玉, 付超, 魏丽丽, 等.钒铁渣复合物改性硅藻土制备高强耐水调湿材料[J].材料导报, 2018, 32(8):1230-1235. http://www.cnki.com.cn/Article/CJFDTotal-CLDB201808005.htm
-