-
摘要:
锆石因其优异的物理化学性质,除在地质测年、陶瓷、玻璃、耐火材料及铸造等诸多领域得以广泛应用外,在核废物固化处理中也展现出良好应用前景,因此锆石是一种战略性非金属矿产。概述了国内外锆石固化核废物的研究现状,重点介绍了锆石基核废物固化体的合成方法,锆石对模拟锕系核素的固化行为,锆石固化体的热稳定性、化学稳定性及辐照稳定性等方面的研究工作,并展望了今后锆石研究的发展方向。
Abstract:Zircon has been widely used in the field of geological dating, ceramics, glass, refractories and casting, and also has a good application prospect in the field of the immobilization of nuclear waste, due to its excellent physical and chemical properties. Therefore, zircon is a strategic non-metallic mineral. In this paper, the research on the immobilization of nuclear waste using zircon is summarized. The synthesis methods, simulated actinides immobilization behavior, thermal stability, chemical stability and irradiation stability of zircon waste form are introduced. Furthermore, the development in the future research of zircon is prospected.
-
Key words:
- zircon /
- synthesis /
- application /
- nuclear waste /
- immobilization
-
-
图 1 ZrSiO4晶体结构[3]
Figure 1.
图 2 Zr1-xNdxSiO4-x/2 系列固化体XRD图谱[16]
Figure 2.
图 3 Zr1-x-y(NdxCey)SiO4-x/2 (0 ≤x, y≤0.1)系列固化体的XRD图谱[15]
Figure 3.
图 4 Zr1-x-y(NdxCey)SiO4-x/2系列固化体的SEM照片[15]
Figure 4.
表 1 锆石的合成方法对比
Table 1. Comparison of synthetic methods of zircon
合成方法 合成条件 特点 高温固相法 1 550 ℃,72 h 可获得相纯度较高的锆石,有助于研究锆石晶体结构的演变,但是不可避免地存在高温、耗时的缺点 溶胶-凝胶法 pH=4,1 400 ℃,6 h 锆石形成率高、合成温度低及合成时间短 微波烧结法 1 500 ℃,12 h 升温速度快、能源利用率高、加热效率高和安全卫生无污染等特点,产品的均匀性和成品率高 -
[1] ROBINSON K, GRBBS G V, RIBBE P H. The structure of zircon: a comparison with garnet[J]. American Mineralogist, 1971, 56: 782-790.
[2] FINCH R J, HANCHAR J M. Structure and chemistry of zircon and zircon-group minerals[J]. Reviews in Mineralogy and Geochemistry, 2003, 53: 1-25. doi: 10.2113/0530001
[3] TU H, DUAN T, DING Y, et al. Phase and microstructural evolutions of the CeO2-ZrO2-SiO2 system synthesized by the sol-gel process[J]. Ceramics International, 2015, 41: 8046-8050. doi: 10.1016/j.ceramint.2015.02.155
[4] HANCHAR J M. A geochemical investigation of zircon[D]. PhD dissertation, Rensselaer Polytechnic Institute, Troy, New York, 1996, (210).
[5] BOWRING S, HOUSH T. The Earth's early evolution[J]. Science, 1995, 269: 1535-1540. doi: 10.1126/science.7667634
[6] VERVOORT J D, PATCHETT P J, GEHRELS G E, et al. Constraints on early Earth differentiation from hafnium and neodymium isotopes[J]. Nature, 1996, 379: 624-627. doi: 10.1038/379624a0
[7] GIBSON G M, IRELAND T R. Granulite formation during continental extension in Fiordland, New Zealand[J]. Nature, 1995, 375: 479-482. doi: 10.1038/375479a0
[8] BOWDEN G J. A review of the low temperature properties of the rare Earth vanadates[J]. Australian Journal of Physics, 1998, 51: 201-236. doi: 10.1071/P97066
[9] SOLAR G S, PRESSLEY R A, BROWN M, et al. Granite ascent in convergent orogenic belts: Testing a model[J]. Geology, 1998, 26: 711-714. doi: 10.1130/0091-7613(1998)026<0711:GAICOB>2.3.CO;2
[10] HATCH L P. Ultimate disposal of radioactive wastes[J]. American Scientist, 1953, 41: 410-421. http://www.researchgate.net/publication/255860809_ULTIMATE_DISPOSAL_OF_RADIOACTIVE_WASTES
[11] RINGWOOD A E, KESSON S E, WARE N G. Immobilization of high level nuclear reactor wastes in SYNROC[J]. Nature, 1979, 278: 219-223. doi: 10.1038/278219a0
[12] EWING R C, LUTZE W, WEBER W J, Zircon: a host-phase for the disposal of weapons plutonium[J]. Journal of Materials Research, 1995, 10: 243-246. doi: 10.1557/JMR.1995.0243
[13] KELLER C. Untersuchungen ueber die germanate und silicate des typs ABO4 der vierwertigen elemente Thorium bis Americium[J]. Nukleonik, 1963(5): 41-48
[14] EWING R C. The design and evaluation of nuclear-waste forms: clues from mineralogy[J]. Canadian Mineralogist, 2001(39): 697-715.
[15] DING Y, LU X R, TU H, et al. Phase evolution and microstructure studies on Nd3+ and Ce4+ co-doped zircon ceramics[J]. Journal of the European Ceramic Society, 2015(35): 2153-2161.
[16] DING Y, LU X R, DAN H, et al. Phase evolution and chemical durability of Nd-doped zircon ceramics designed to immobilize trivalent actinides[J]. Ceramics International, 2015, 41: 10044-10050. doi: 10.1016/j.ceramint.2015.04.092
[17] SPEARING D R, HUANG J Y. Zircon synthesis via sintering of milled SiO2 and ZrO2[J]. Journal of the American Ceramic Society, 1998, 81: 1964-1966. http://onlinelibrary.wiley.com/doi/10.1111/j.1151-2916.1998.tb02577.x/abstract
[18] PARCIANELLO G, BERNARDO E, COLOMBO P. Low temperature synthesis of zircon from silicone resins and oxide nano-sized particles[J]. Journal of the European Ceramic Society, 2012(32): 2819-2824.
[19] SUN Y, YANG Q H, WANG H Q, et al. Depression of synthesis temperature and structure characterization of ZrSiO4 used in ceramic pigments[J]. Materials Chemistry and Physics, 2017, 205: 97-101.
[20] VEYTIZOU C, QUISON J F, DOUY A. Sol-gel synthesis via an aqueous semi-alkoxide route and characterization of zircon powders[J]. Journal of Materials Chemistry, 2000, 10: 365-370. doi: 10.1039/a906003k
[21] WANG H D, JIANG W H, FENG G, et al. Preparation of zircon whiskers via non-hydrolytic sol-gel process combined with molten salt method[J]. Advanced Materials Research, 2014, 936: 970-974. doi: 10.4028/www.scientific.net/AMR.936.970
[22] ZHANG T, PAN Z, WANG Y. Low-temperature synthesis of zircon by soft mechano-chemical activation-assisted sol-gel method[J]. Journal of Sol-Gel Science and Technology, 2017, 84: 118-128. doi: 10.1007/s10971-017-4480-2
[23] DING Y, JIANG Z D, LI Y J, et al. Low temperature and rapid preparation of zirconia/zircon (ZrO2/ZrSiO4) composite ceramics by a hydrothermal-assisted sol-gel process[J]. Journal of Alloys and Compounds, 2017, 735: 2190-2196.
[24] TU H, DUAN T, DING Y, et al. Preparation of zircon-matrix material for dealing with high-level radioactive waste with microwave[J]. Materials Letters, 2014, 131: 171-173. doi: 10.1016/j.matlet.2014.05.195
[25] BURAKOV B E. A study of high-uranium technogenous zircon (Zr, U) SiO4 from chernobyl lavas in connection with the problem of creating a crystalline matrix for high-level waste disposal[J]. Safe Manag Dispos Nucl Waste, 1993(2): 19-28.
[26] WEBER W J, EWING R C, CATLOW C R A, et al. Radiation effects in crystalline ceramics for the immobilization of high-level nuclear waste and plutonium[J]. Journal of Materials Research, 1998(13): 1434-1484.
[27] HARKER A B, FLINTOFF J F. Polyphase ceramic for consolidating nuclear waste compositions with high Zr-Cd-Na content[J]. Journal of the American Ceramic Society, 2010(73): 1901-1906.
[28] EWING R C. The design and evaluation of nuclear-waste forms: clues from mineralogy[J]. Canadian Mineralogist, 2001(39): 697-715.
[29] ROBINSON K, GRBBS G V, RIBBE P H. The structure of zircon: a comparison with garnet[J]. American Mineralogist, 1971, 56: 782-790.
[30] TAYLOR M, EWING R C. The crystal structures of the ThSiO4 polymorphs: huttonite and thorite[J]. Acta Crystallographica, 2010, 34: 1074-1079.
[31] RENDTORFF N M, GRASSO S, HU C F, et al. Dense zircon (ZrSiO4) ceramics by high energy ball milling and spark plasma sintering[J]. Ceramics International, 2012, 38: 1793-1799. doi: 10.1016/j.ceramint.2011.10.001
[32] ARAZURI S C, JARÉN A J I, PÉREZ DE CIRIZA J J. Colloidal processing, sintering and mechanical properties of zircon (ZrSiO4)[J]. Journal of Food Engineering, 2015, 41: 1015-1021.
[33] SPEAR J A. The actinide orthosilicates[J]. Reviews in Mineralogy, Mineralogical Society of America, 1982(5): 113-135.
[34] SPEER J A, COOPER B J. Crystal structure of synthetic hafnon, HISiO4, comparison with zircon and the actinide orthosilicates[J]. American Mineralogist, 1982, 67: 7-8.
[35] MUMPTON F A, Roy R. Hydrothermal stability studies of the zircon-thorite group[J]. Geochimica Et Cosmochimica Acta, 1961, 21: 217-238. doi: 10.1016/S0016-7037(61)80056-2
[36] WEBER W J. Radiation-induced defects and amorphization in zircon[J]. Journal of Materials Research, 1990(5): 2687-2697. http://journals.cambridge.org/abstract_S0884291400037651
[37] WEBER W J. Self-radiation damage and recovery in Pu-doped zircon[J]. Radiation Effects, 1991, 115: 341-349. doi: 10.1080/10420159108220580
[38] CURTIS C E, SOWMAN H G. Investigation of the thermal dissociation, reassociation, and synthesis of zircon[J]. Journal of the American Ceramic Society, 1953, 36: 190-198. doi: 10.1111/j.1151-2916.1953.tb12865.x
[39] KANNO Y. Thermodynamic and crystallographic discussion of the formation and dissociation of zircon[J]. Journal of Materials Science, 1989, 24: 2415-2420. doi: 10.1007/BF01174504
[40] TARTAJ P, SERNA C J, MOYA J S, et al. The formation of zircon from amorphous ZrO2·SiO2 powders[J]. Journal of Materials Science, 1996, 31: 6089-6094. doi: 10.1007/BF01152164
[41] ANSEAU M R, BILOQUE J P, FIERENS P. Some studies on the thermal solid state stability of zircon[J]. Journal of Materials Science, 1976(11): 578-582.
[42] KLUTE R. Phasenbeziehungen im system Al2O3-Cr2O3-SiO2-ZrO2 unternbesonderer berücksichtigung des korundhaltigen bereichs[D]. 1982.
[43] BUTTERMAN W C, Foster W R. Zircon stability and the ZrO2-SiO2 phase diagram[J]. American Mineralogist: Journal of Earth and Planetary Materials, 1967, 52: 880-885. http://www.researchgate.net/publication/284773296_Zircon_stability_and_the_ZrO2-SiO2_phase_diagram
[44] PIDGEON R T, NEIL J R, SILVER L T. Uranium and lead isotopic stability in a metamict zircon under experimental hydrothermal conditions[J]. Science, 1966, 154: 1538-1540. doi: 10.1126/science.154.3756.1538
[45] TOLE M P. The kinetics of dissolution of zircon (ZrSiO4)[J]. Geochimica et Cosmochimica Acta, 1985, 49: 453-458. doi: 10.1016/0016-7037(85)90036-5
[46] TROCELLIER P, DELMAS R. Chemical durability of zircon[J]. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 2001, 181: 408-412. doi: 10.1016/S0168-583X(01)00377-9
[47] XIE Y, FAN L, SHU X, et al. Chemical stability of Ce-doped zircon ceramics: Influence of pH, temperature and their coupling effects[J]. Journal of Rare Earths, 2017, 35: 164-171. doi: 10.1016/S1002-0721(17)60895-0
[48] 杨建文, 罗上庚, 李宝军, 等. 富烧绿石人造岩石固化模拟锕系废物[J]. 原子能科学技术, 2001, 35: 104-109. https://www.cnki.com.cn/Article/CJFDTOTAL-YZJS2001S1017.htm
[49] ZHANG M, SALJE E K. Infrared spectroscopic analysis of zircon: Radiation damage and the metamict state[J]. Journal of physics: condensed matter, 2001(13): 3057-3071.
[50] EVRON R, KIMMEL G, EYAL Y. Thermal recovery of self-radiation damage in uraninite and thorianite[J]. Journal of Nuclear Materials, 1994, 217: 54-66. doi: 10.1016/0022-3115(94)90304-2
[51] HOLLAND H D, GOTTFRIED D. The effect of nuclear radiation on the structure of zircon[J]. Acta Crystallographica, 1955(8): 291-300.
[52] WEBER W J, EWING R C, MELDRUM A. The kinetics of alpha-decay-induced amorphization in zircon and apatite containing weapons-grade plutonium or other actinides[J]. Journal of Nuclear Materials, 1997, 250: 147-155. doi: 10.1016/S0022-3115(97)00271-7
[53] DING Y, JIANG Z D, LI Y J, et al. Effect of alpha-particles irradiation on the phase evolution and chemical stability of Nd-doped zircon ceramics[J]. Journal of Alloys and Compounds, 2017, 729: 483-491. doi: 10.1016/j.jallcom.2017.09.178
-