锆石的合成及其固化核废物应用研究

丁艺, 江正迪, 鲜强, 旦辉, 段涛. 锆石的合成及其固化核废物应用研究[J]. 矿产保护与利用, 2020, 40(6): 8-15. doi: 10.13779/j.cnki.issn1001-0076.2020.06.002
引用本文: 丁艺, 江正迪, 鲜强, 旦辉, 段涛. 锆石的合成及其固化核废物应用研究[J]. 矿产保护与利用, 2020, 40(6): 8-15. doi: 10.13779/j.cnki.issn1001-0076.2020.06.002
DING Yi, JIANG Zhengdi, XIAN Qiang, DAN Hui, DUAN Tao. Synthesis of Zircon and Its Application in the Immobilization of Nuclear Waste[J]. Conservation and Utilization of Mineral Resources, 2020, 40(6): 8-15. doi: 10.13779/j.cnki.issn1001-0076.2020.06.002
Citation: DING Yi, JIANG Zhengdi, XIAN Qiang, DAN Hui, DUAN Tao. Synthesis of Zircon and Its Application in the Immobilization of Nuclear Waste[J]. Conservation and Utilization of Mineral Resources, 2020, 40(6): 8-15. doi: 10.13779/j.cnki.issn1001-0076.2020.06.002

锆石的合成及其固化核废物应用研究

  • 基金项目:
    国防基础科研计划(JCKY2019404D001);四川省科技计划项目(2020YJ0417)
详细信息
    作者简介: 丁艺, 博士, 副教授, 从事核废物处理处置与材料研究, E-mail: yiding@swust.edu.cn
    通讯作者: 段涛, 博士, 教授, 博士生导师, 从事新能源与材料研究, E-mail: duant@swust.edu.cn
  • 中图分类号: TQ134.1+2;TL941

Synthesis of Zircon and Its Application in the Immobilization of Nuclear Waste

More Information
  • 锆石因其优异的物理化学性质,除在地质测年、陶瓷、玻璃、耐火材料及铸造等诸多领域得以广泛应用外,在核废物固化处理中也展现出良好应用前景,因此锆石是一种战略性非金属矿产。概述了国内外锆石固化核废物的研究现状,重点介绍了锆石基核废物固化体的合成方法,锆石对模拟锕系核素的固化行为,锆石固化体的热稳定性、化学稳定性及辐照稳定性等方面的研究工作,并展望了今后锆石研究的发展方向。

  • 加载中
  • 图 1  ZrSiO4晶体结构[3]

    Figure 1. 

    图 2  Zr1-xNdxSiO4-x/2 系列固化体XRD图谱[16]

    Figure 2. 

    图 3  Zr1-x-y(NdxCey)SiO4-x/2 (0 ≤x, y≤0.1)系列固化体的XRD图谱[15]

    Figure 3. 

    图 4  Zr1-x-y(NdxCey)SiO4-x/2系列固化体的SEM照片[15]

    Figure 4. 

    表 1  锆石的合成方法对比

    Table 1.  Comparison of synthetic methods of zircon

    合成方法 合成条件 特点
    高温固相法 1 550 ℃,72 h 可获得相纯度较高的锆石,有助于研究锆石晶体结构的演变,但是不可避免地存在高温、耗时的缺点
    溶胶-凝胶法 pH=4,1 400 ℃,6 h 锆石形成率高、合成温度低及合成时间短
    微波烧结法 1 500 ℃,12 h 升温速度快、能源利用率高、加热效率高和安全卫生无污染等特点,产品的均匀性和成品率高
    下载: 导出CSV
  • [1]

    ROBINSON K, GRBBS G V, RIBBE P H. The structure of zircon: a comparison with garnet[J]. American Mineralogist, 1971, 56: 782-790.

    [2]

    FINCH R J, HANCHAR J M. Structure and chemistry of zircon and zircon-group minerals[J]. Reviews in Mineralogy and Geochemistry, 2003, 53: 1-25. doi: 10.2113/0530001

    [3]

    TU H, DUAN T, DING Y, et al. Phase and microstructural evolutions of the CeO2-ZrO2-SiO2 system synthesized by the sol-gel process[J]. Ceramics International, 2015, 41: 8046-8050. doi: 10.1016/j.ceramint.2015.02.155

    [4]

    HANCHAR J M. A geochemical investigation of zircon[D]. PhD dissertation, Rensselaer Polytechnic Institute, Troy, New York, 1996, (210).

    [5]

    BOWRING S, HOUSH T. The Earth's early evolution[J]. Science, 1995, 269: 1535-1540. doi: 10.1126/science.7667634

    [6]

    VERVOORT J D, PATCHETT P J, GEHRELS G E, et al. Constraints on early Earth differentiation from hafnium and neodymium isotopes[J]. Nature, 1996, 379: 624-627. doi: 10.1038/379624a0

    [7]

    GIBSON G M, IRELAND T R. Granulite formation during continental extension in Fiordland, New Zealand[J]. Nature, 1995, 375: 479-482. doi: 10.1038/375479a0

    [8]

    BOWDEN G J. A review of the low temperature properties of the rare Earth vanadates[J]. Australian Journal of Physics, 1998, 51: 201-236. doi: 10.1071/P97066

    [9]

    SOLAR G S, PRESSLEY R A, BROWN M, et al. Granite ascent in convergent orogenic belts: Testing a model[J]. Geology, 1998, 26: 711-714. doi: 10.1130/0091-7613(1998)026<0711:GAICOB>2.3.CO;2

    [10]

    HATCH L P. Ultimate disposal of radioactive wastes[J]. American Scientist, 1953, 41: 410-421. http://www.researchgate.net/publication/255860809_ULTIMATE_DISPOSAL_OF_RADIOACTIVE_WASTES

    [11]

    RINGWOOD A E, KESSON S E, WARE N G. Immobilization of high level nuclear reactor wastes in SYNROC[J]. Nature, 1979, 278: 219-223. doi: 10.1038/278219a0

    [12]

    EWING R C, LUTZE W, WEBER W J, Zircon: a host-phase for the disposal of weapons plutonium[J]. Journal of Materials Research, 1995, 10: 243-246. doi: 10.1557/JMR.1995.0243

    [13]

    KELLER C. Untersuchungen ueber die germanate und silicate des typs ABO4 der vierwertigen elemente Thorium bis Americium[J]. Nukleonik, 1963(5): 41-48

    [14]

    EWING R C. The design and evaluation of nuclear-waste forms: clues from mineralogy[J]. Canadian Mineralogist, 2001(39): 697-715.

    [15]

    DING Y, LU X R, TU H, et al. Phase evolution and microstructure studies on Nd3+ and Ce4+ co-doped zircon ceramics[J]. Journal of the European Ceramic Society, 2015(35): 2153-2161.

    [16]

    DING Y, LU X R, DAN H, et al. Phase evolution and chemical durability of Nd-doped zircon ceramics designed to immobilize trivalent actinides[J]. Ceramics International, 2015, 41: 10044-10050. doi: 10.1016/j.ceramint.2015.04.092

    [17]

    SPEARING D R, HUANG J Y. Zircon synthesis via sintering of milled SiO2 and ZrO2[J]. Journal of the American Ceramic Society, 1998, 81: 1964-1966. http://onlinelibrary.wiley.com/doi/10.1111/j.1151-2916.1998.tb02577.x/abstract

    [18]

    PARCIANELLO G, BERNARDO E, COLOMBO P. Low temperature synthesis of zircon from silicone resins and oxide nano-sized particles[J]. Journal of the European Ceramic Society, 2012(32): 2819-2824.

    [19]

    SUN Y, YANG Q H, WANG H Q, et al. Depression of synthesis temperature and structure characterization of ZrSiO4 used in ceramic pigments[J]. Materials Chemistry and Physics, 2017, 205: 97-101.

    [20]

    VEYTIZOU C, QUISON J F, DOUY A. Sol-gel synthesis via an aqueous semi-alkoxide route and characterization of zircon powders[J]. Journal of Materials Chemistry, 2000, 10: 365-370. doi: 10.1039/a906003k

    [21]

    WANG H D, JIANG W H, FENG G, et al. Preparation of zircon whiskers via non-hydrolytic sol-gel process combined with molten salt method[J]. Advanced Materials Research, 2014, 936: 970-974. doi: 10.4028/www.scientific.net/AMR.936.970

    [22]

    ZHANG T, PAN Z, WANG Y. Low-temperature synthesis of zircon by soft mechano-chemical activation-assisted sol-gel method[J]. Journal of Sol-Gel Science and Technology, 2017, 84: 118-128. doi: 10.1007/s10971-017-4480-2

    [23]

    DING Y, JIANG Z D, LI Y J, et al. Low temperature and rapid preparation of zirconia/zircon (ZrO2/ZrSiO4) composite ceramics by a hydrothermal-assisted sol-gel process[J]. Journal of Alloys and Compounds, 2017, 735: 2190-2196.

    [24]

    TU H, DUAN T, DING Y, et al. Preparation of zircon-matrix material for dealing with high-level radioactive waste with microwave[J]. Materials Letters, 2014, 131: 171-173. doi: 10.1016/j.matlet.2014.05.195

    [25]

    BURAKOV B E. A study of high-uranium technogenous zircon (Zr, U) SiO4 from chernobyl lavas in connection with the problem of creating a crystalline matrix for high-level waste disposal[J]. Safe Manag Dispos Nucl Waste, 1993(2): 19-28.

    [26]

    WEBER W J, EWING R C, CATLOW C R A, et al. Radiation effects in crystalline ceramics for the immobilization of high-level nuclear waste and plutonium[J]. Journal of Materials Research, 1998(13): 1434-1484.

    [27]

    HARKER A B, FLINTOFF J F. Polyphase ceramic for consolidating nuclear waste compositions with high Zr-Cd-Na content[J]. Journal of the American Ceramic Society, 2010(73): 1901-1906.

    [28]

    EWING R C. The design and evaluation of nuclear-waste forms: clues from mineralogy[J]. Canadian Mineralogist, 2001(39): 697-715.

    [29]

    ROBINSON K, GRBBS G V, RIBBE P H. The structure of zircon: a comparison with garnet[J]. American Mineralogist, 1971, 56: 782-790.

    [30]

    TAYLOR M, EWING R C. The crystal structures of the ThSiO4 polymorphs: huttonite and thorite[J]. Acta Crystallographica, 2010, 34: 1074-1079.

    [31]

    RENDTORFF N M, GRASSO S, HU C F, et al. Dense zircon (ZrSiO4) ceramics by high energy ball milling and spark plasma sintering[J]. Ceramics International, 2012, 38: 1793-1799. doi: 10.1016/j.ceramint.2011.10.001

    [32]

    ARAZURI S C, JARÉN A J I, PÉREZ DE CIRIZA J J. Colloidal processing, sintering and mechanical properties of zircon (ZrSiO4)[J]. Journal of Food Engineering, 2015, 41: 1015-1021.

    [33]

    SPEAR J A. The actinide orthosilicates[J]. Reviews in Mineralogy, Mineralogical Society of America, 1982(5): 113-135.

    [34]

    SPEER J A, COOPER B J. Crystal structure of synthetic hafnon, HISiO4, comparison with zircon and the actinide orthosilicates[J]. American Mineralogist, 1982, 67: 7-8.

    [35]

    MUMPTON F A, Roy R. Hydrothermal stability studies of the zircon-thorite group[J]. Geochimica Et Cosmochimica Acta, 1961, 21: 217-238. doi: 10.1016/S0016-7037(61)80056-2

    [36]

    WEBER W J. Radiation-induced defects and amorphization in zircon[J]. Journal of Materials Research, 1990(5): 2687-2697. http://journals.cambridge.org/abstract_S0884291400037651

    [37]

    WEBER W J. Self-radiation damage and recovery in Pu-doped zircon[J]. Radiation Effects, 1991, 115: 341-349. doi: 10.1080/10420159108220580

    [38]

    CURTIS C E, SOWMAN H G. Investigation of the thermal dissociation, reassociation, and synthesis of zircon[J]. Journal of the American Ceramic Society, 1953, 36: 190-198. doi: 10.1111/j.1151-2916.1953.tb12865.x

    [39]

    KANNO Y. Thermodynamic and crystallographic discussion of the formation and dissociation of zircon[J]. Journal of Materials Science, 1989, 24: 2415-2420. doi: 10.1007/BF01174504

    [40]

    TARTAJ P, SERNA C J, MOYA J S, et al. The formation of zircon from amorphous ZrO2·SiO2 powders[J]. Journal of Materials Science, 1996, 31: 6089-6094. doi: 10.1007/BF01152164

    [41]

    ANSEAU M R, BILOQUE J P, FIERENS P. Some studies on the thermal solid state stability of zircon[J]. Journal of Materials Science, 1976(11): 578-582.

    [42]

    KLUTE R. Phasenbeziehungen im system Al2O3-Cr2O3-SiO2-ZrO2 unternbesonderer berücksichtigung des korundhaltigen bereichs[D]. 1982.

    [43]

    BUTTERMAN W C, Foster W R. Zircon stability and the ZrO2-SiO2 phase diagram[J]. American Mineralogist: Journal of Earth and Planetary Materials, 1967, 52: 880-885. http://www.researchgate.net/publication/284773296_Zircon_stability_and_the_ZrO2-SiO2_phase_diagram

    [44]

    PIDGEON R T, NEIL J R, SILVER L T. Uranium and lead isotopic stability in a metamict zircon under experimental hydrothermal conditions[J]. Science, 1966, 154: 1538-1540. doi: 10.1126/science.154.3756.1538

    [45]

    TOLE M P. The kinetics of dissolution of zircon (ZrSiO4)[J]. Geochimica et Cosmochimica Acta, 1985, 49: 453-458. doi: 10.1016/0016-7037(85)90036-5

    [46]

    TROCELLIER P, DELMAS R. Chemical durability of zircon[J]. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 2001, 181: 408-412. doi: 10.1016/S0168-583X(01)00377-9

    [47]

    XIE Y, FAN L, SHU X, et al. Chemical stability of Ce-doped zircon ceramics: Influence of pH, temperature and their coupling effects[J]. Journal of Rare Earths, 2017, 35: 164-171. doi: 10.1016/S1002-0721(17)60895-0

    [48]

    杨建文, 罗上庚, 李宝军, 等. 富烧绿石人造岩石固化模拟锕系废物[J]. 原子能科学技术, 2001, 35: 104-109. https://www.cnki.com.cn/Article/CJFDTOTAL-YZJS2001S1017.htm

    [49]

    ZHANG M, SALJE E K. Infrared spectroscopic analysis of zircon: Radiation damage and the metamict state[J]. Journal of physics: condensed matter, 2001(13): 3057-3071.

    [50]

    EVRON R, KIMMEL G, EYAL Y. Thermal recovery of self-radiation damage in uraninite and thorianite[J]. Journal of Nuclear Materials, 1994, 217: 54-66. doi: 10.1016/0022-3115(94)90304-2

    [51]

    HOLLAND H D, GOTTFRIED D. The effect of nuclear radiation on the structure of zircon[J]. Acta Crystallographica, 1955(8): 291-300.

    [52]

    WEBER W J, EWING R C, MELDRUM A. The kinetics of alpha-decay-induced amorphization in zircon and apatite containing weapons-grade plutonium or other actinides[J]. Journal of Nuclear Materials, 1997, 250: 147-155. doi: 10.1016/S0022-3115(97)00271-7

    [53]

    DING Y, JIANG Z D, LI Y J, et al. Effect of alpha-particles irradiation on the phase evolution and chemical stability of Nd-doped zircon ceramics[J]. Journal of Alloys and Compounds, 2017, 729: 483-491. doi: 10.1016/j.jallcom.2017.09.178

  • 加载中

(4)

(1)

计量
  • 文章访问数:  2018
  • PDF下载数:  122
  • 施引文献:  0
出版历程
收稿日期:  2020-09-12
刊出日期:  2020-12-25

目录