-
摘要:
铜渣属于重要的二次资源,产量大,富含有价金属组分,在工业中有其重要的利用价值。目前铜渣的主要利用方向为提取有价金属元素和减量化应用。通过对铜渣的特性、来源以及综合利用现状评述可知,采用浮选法、火法、湿法、联合法或生物浸出法处理铜渣都存在一定的不足,减量化应用也存在相应的问题。最后指出未来铜渣利用的研究方向。
Abstract:Copper slag is a vitally secondary resource, more quantities, richen in valuable metal elements, which has an important utility in industries. Recently, the main utilization direction of copper slag is to extract valuable metal elements and reduce the application. It can be seen that through the review of the characteristics, sources and previous studies of copper slag, there are some deficiencies in the treatment of copper slag via flotation method, fire method, wet method, combined method or bioleaching method, and the same as in the application of reduction. Ultimately, the research and application direction of copper slag in the future are pointed out, so that the copper slag can be applied reasonably and comprehensively.
-
Key words:
- copper slag /
- secondary resource treatment /
- recycling metals /
- comprehensive utilities
-
-
表 1 我国主要铜冶炼厂粗铜及铜渣产量
Table 1. Production of crude copper and slag from major copper smelters in China
/(104 t·a-1) 企业名称及熔炼方法 粗铜 铜渣 铜渣堆存量/104 t 贵溪冶炼厂闪速炉 8 19.5 100 铜陵有色金属公司密闭鼓风炉 7 24 300 云南冶炼厂电炉 7 19.5 300 大冶有色金属公司反射炉 5.4 22 80 白银有色金属公司白银炼铜沪 4 23.5 540 沈阳冶练厂密闭鼓风炉 6.5 22 100 中条山有色金属公司密闭鼓风炉 2.0 8 100 金川有色金属公司反射沪 1.5 5.8 40 石菉铜业公司反射炉 1.4 2.4 0 水口山矿务局密闭鼓风炉 0.6 2.3 23 富春江冶场、丁击闭鼓风炉 0.3 1.5 0 烟台冶炼厂密闭鼓风炉 0.3 1.5 0 合计 43.6 150.2 1 583 *铜渣利用率:贵冶46.93%,大冶69.85%,白银公司4%。 表 2 铜渣的典型化学成分
Table 2. Table of typical chemical components of copper slag
/% 冶炼工艺 成分 Cu Fe S SiO2 Al2O3 CaO 密闭鼓风炉 0.42 29 0 38 7.5 11 奥托昆普闪速炉(渣不贫化) 1.5 44.4 1.6 26.6 0 0 奥托昆普闪速炉(渣贫化) 0.78 44.06 1.4 29.7 7.8 0.6 Inco闪速炉 0.9 44.0 1.1 33.0 4.72 1.73 诺兰达炉 4.57 42.14 1.7 23.38 2.52 5.25 白银炉 0.45 35.0 0.7 35.0 3.8 8.0 奥斯麦特炉 0.65 34.0 2.8 31.0 7.5 5.0 双闪炉 1.30 39.44 0.41 30.18 2.16 3.97 电炉 1.23 40.83 0.45 35.10 3.83 2.15 转炉 4.52 42.63 1.11 22.69 1.48 1.30 合成炉 0.70 38.30 1.04 14.51 1.03 2.35 艾萨熔炼(电炉贫化) 0.74 41.28 0 0 3.85 3.74 -
[1] 姚春玲, 刘振楠, 滕瑜, 等. 铜渣资源综合利用现状及展望[J]. 矿冶, 2019, 28(2): 77-81. https://www.cnki.com.cn/Article/CJFDTOTAL-KYZZ201902017.htm
[2] ZUO Z, YU Q, LUO S, et al. Effects of CaO on two-step reduction characteristics of copper slag using biochar as reducer: thermodynamic and kinetics[J]. Energy & Fuels, 2020, 34(1): 491-500. http://pubs.acs.org/doi/10.1021/acs.energyfuels.9b03274
[3] JUNG HH, YONGS C, JOO HP. Recovery of iron and removal of hazardous elements from waste copper slag via a novel aluminothermic smelting reduction (ASR) process[J]. Journal of Cleaner Production, 2016, 137(20): 777-787. http://www.sciencedirect.com/science/article/pii/S0959652616310502
[4] 韩彬, 童雄, 张国浩, 等. 某铜炉渣的工艺矿物学研究[J]. 矿产保护与利用, 2015(1): 63-68. http://kcbh.cbpt.cnki.net/WKD/WebPublication/paperDigest.aspx?paperID=bf0ae90c-aeda-43ba-8639-9356f27082fc
[5] 吴红林, 包崇军, 宗祥波. 铜渣综合利用工艺试验研究[J]. 世界有色金属, 2017(14): 1-3. https://www.cnki.com.cn/Article/CJFDTOTAL-COLO201714001.htm
[6] ZHU D, XU J, GUO Z, et al. Synergetic utilization of copper slag and ferruginous manganese ore via co-reduction followed by magnetic separation process[J]. Journal of Cleaner Production, 2020, 250(20): 1-10. http://www.sciencedirect.com/science/article/pii/S095965261934332X
[7] 谢文东, 陈雯, 沈强华, 等. 利用铜渣制备铁硫合金的试验研究[J]. 钢铁研究学报, 2020, 32(7): 668-674.
[8] 李涛, 刘晨, 佘世杰. 铜渣中铁铜回收的试验研究[J]. 矿产综合利用, 2020(2): 145-150. doi: 10.3969/j.issn.1000-6532.2020.02.026
[9] 陈月花. 某低品位铜炉渣回收铜试验研究[J]. 云南冶金, 2018, 47(5): 28-31. doi: 10.3969/j.issn.1006-0308.2018.05.006
[10] 汪泰, 叶小璐. 从铜渣中综合回收铜、银的浮选试验研究[J]. 矿冶工程, 2017, 37(1): 39-41. doi: 10.3969/j.issn.0253-6099.2017.01.011
[11] ROY S, REHANI S. Flotation of copper sulphide from copper smelter slag using multiple collectors and their mixtures[J]. International Journal of Mineral Processing, 2015, 143: 43-49. doi: 10.1016/j.minpro.2015.08.008
[12] 赵凯, 程相利, 齐渊洪, 等. 铜渣处理技术分析及综合利用新工艺[J]. 中国有色冶金, 2012, 41(1): 56-60. doi: 10.3969/j.issn.1672-6103.2012.01.016
[13] 杨慧芬, 景丽丽, 党春阁. 铜渣中铁组分的直接还原与磁选回收[J]. 中国有色金属学报, 2011, 21(5): 1165-1170. https://www.cnki.com.cn/Article/CJFDTOTAL-ZYXZ201105035.htm
[14] HU JH, WANG H, LI L. Recovery of iron from copper slag by melting reduction[C]. 2011 International Conference on Computer, Electrical Systems Sciences and Engineering, 2011: 541-543
[15] LI S, PAN J, ZHU D, et al. A novel process to upgrade the copper slag by direct reduction-magnetic separation with the addition of Na2CO3 and CaO[J]. Powder Technology, 2019, 347: 159-169. doi: 10.1016/j.powtec.2019.02.046
[16] BANZA AN, GOCH E, KONGOLO K. Base metals recovery from copper smelter slag by oxidising leaching and solvent extraction[J]. Hydrometallurgy, 2002, 67(1): 63-69. http://www.sciencedirect.com/science/article/pii/S0304386X0200138X
[17] 李泰康. 氯化法回收鼓风炉炼铜炉渣中有价金属[J]. 有色金属(冶炼部分), 2001(4): 8-10. doi: 10.3969/j.issn.1007-7545.2001.04.003
[18] 郭勇, 秦庆伟, 汤海波, 等. 从贫化炉水淬渣中氨浸提铜试验研究[J]. 湿法冶金, 2016, 35(4): 320-323. https://www.cnki.com.cn/Article/CJFDTOTAL-SFYJ201604011.htm
[19] 赖祥生, 黄红军. 铜渣资源化利用技术现状[J]. 金属矿山, 2017(11): 205-208. doi: 10.3969/j.issn.1001-1250.2017.11.040
[20] EWA R, LIDIA B, WANDA G. Hydrometallurgical recovery of copper and cobalt from reduction-roasted copper converter slag[J]. Minerals Engineering, 2009, 22(1): 88-95. doi: 10.1016/j.mineng.2008.04.016
[21] ARSLAN C, ARSLAN F. Recovery of copper, cobalt, and zinc from copper smelter and converter slags[J]. Hydrometallurgy, 2002, 67(1): 1-7. http://www.sciencedirect.com/science/article/pii/S0304386X02001391
[22] ALTUNDOGAN HS, TUMEN F. Metal recovery from copper converter slag by roasting with ferric sulphate[J]. Hydrometallurgy, 1997, 44(1): 261-267. http://www.sciencedirect.com/science/article/pii/S0304386X96000382
[23] DIMITRIJEVIC MD, UROSEVIC DM, JANKOVIC ZD, et al. Recovery of copper from smelting slag by sulphation roasting and water leaching[J]. Physicochemical problems of mineral processing, 2016, 52(1): 409-421. http://www.researchgate.net/publication/289576560_RECOVERY_OF_COPPER_FROM_SMELTING_SLAG_BY_SULPHATION_ROASTING_AND_WATER_LEACHING
[24] MURAVYOV MI, FOMCHENKO NV. Leaching of nonferrous metals from copper converter slag with application of acidophilic microorganisms[J]. Applied Biochemistry and Microbiology, 2013, 49(6): 562-569. doi: 10.1134/S0003683813060136
[25] 成应向, 王强强, 戴友芝, 等. 土著微生物浸出有色冶炼废渣中的镉[J]. 环境化学, 2011, 30(3): 703-707. https://www.cnki.com.cn/Article/CJFDTOTAL-HJHX201103025.htm
[26] MAXIM I. MURAVYOV, NATALYA V. et al. Leaching of copper and zinc from copper converter slag flotation tailings using H2SO4 and biologically generated Fe2(SO4)3[J]. Hydrometallurgy, 2012, 119-120. http://www.sciencedirect.com/science/article/pii/S0304386X1200059X
[27] 翟玉春, 刘喜海. 现代冶金学[M]. 北京: 电子工业出版社, 2000.
[28] ALP I, DEVECI H, SUNGUN H. Utilization of flotation wastes of copper slag as raw material in cement production[J]. Journal of Hazardous Materials, 2008, 159(2): 390-395. http://www.sciencedirect.com/science/article/pii/S030438940800263X
[29] 石瑀. 硼酸钙添加剂改性铜渣及降低渣含铜研究[D]. 昆明: 昆明理工大学, 2019.
[30] CAIJ S, CHRISTISN M, ALI B. Utilization of copper slag in cement and concrete[J]. Resources, Conservation & Recycling, 2008, 52(10): 1115-1120. http://www.sciencedirect.com/science/article/pii/S0921344908000918
[31] 邓玉莲, 黄丽霖, 陈柳峰, 等. 铜渣作为铁质原料制备高强度水泥的研究[J]. 硅酸盐通报, 2016, 35(12): 4303-4307. https://www.cnki.com.cn/Article/CJFDTOTAL-GSYT201612073.htm
[32] 姚春玲, 刘振楠, 滕瑜, 等. 铜渣资源综合利用现状及展望[J]. 矿冶, 2019, 28(2): 77-81. https://www.cnki.com.cn/Article/CJFDTOTAL-KYZZ201902017.htm
[33] 张雷, 郭利杰, 李文臣. 基于铜镍冶炼渣制备充填胶凝材料试验研究[J/OL]. 黄金科学技术: (2020-08-28)[2020-09-06]. http://kns.cnki.net.
[34] 何伟, 周予启, 王强. 铜渣粉作为混凝土掺合料的研究进展[J]. 材料导报, 2018, 32(23): 4125-4134. doi: 10.11896/j.issn.1005-023X.2018.23.014
[35] 江明丽, 李长荣. 炼铜炉渣的贫化及资源化利用[J]. 中国有色冶金, 2009(3): 57-60. doi: 10.3969/j.issn.1672-6103.2009.03.017
[36] 林巧, 杨志红, 谢红佳, 等. 利用铜渣制备微晶玻璃的研究[J]. 硅酸盐通报, 2012, 31(5): 1204-1207. https://www.cnki.com.cn/Article/CJFDTOTAL-GSYT201205034.htm
[37] NIKITA G, RAFAT S. Durability characteristics of self-compacting concrete made with copper slag[J]. Construction and Building Materials, 2020(247): 118580. http://www.sciencedirect.com/science/article/pii/S0950061820305857
[38] WANG DP, WANG Q, HUANG ZX. Reuse of copper slag as a supplementary cementitious material: Reactivity and safety[J]. Resources, Conservation & Recycling, 2020(162): 105037. http://www.sciencedirect.com/science/article/pii/S0921344920303542
-