Optimization Test of Stirred Mill for Mixed Magnetic Concentrate from Donganshan
-
摘要:
鞍钢东鞍山烧结厂原矿主要以细粒嵌布的赤铁矿和磁铁矿为主,为解决现场球磨机效率低、有用矿物单体解离度低等问题,进行了陶瓷球搅拌磨、球磨工艺的优化和对比试验。试验结果表明,搅拌磨适宜条件为充填率80%、料球比0.9、磨矿质量浓度60%、介质尺寸6 mm、搅拌器转速650 r/min;球磨适宜条件为介质质量配比为m(32 mm):m(25 mm):m(19 mm)为5:3:2、充填率40%、料球比1.0、磨矿质量浓度70%。此时搅拌磨机磨矿效果更好,-0.038 mm比生产率达3 636.20 kg/(m3·h),磨矿效率达71.93 kg/(kW·h)。相同细度样品分析表明,搅拌磨产品中过细和过粗粒级含量均相对较少,有用矿物单体解离度比球磨高4.5%~8%。反浮选试验表明,搅拌磨可将精矿铁品位和回收率分别提高0.94和2.99个百分点。因此,搅拌磨机比球磨机具有更好的磨矿效果和浮选指标。
Abstract:The raw ore is mainly fine disseminated hematite and magnetite in Donganshan Sintering Plant. The field problems are low efficiency of ball milling and low monomer dissociation etc. In this research, the process optimization and comparison of magnetic concentrate ball milling and ceramic ball stirring grinding were carried out. The results show that the optimum conditions of stirring mill are as follows: filling rate of 80%, material ball ratio of 0.9, grinding concentration of 60%, medium size of 6 mm and agitator speed of 650 r/min. For ball milling, the optimum conditions are as follows: the medium ratio of 32 mm: 25 mm: 19 mm of 5:3:2, filling rate of 40%, material ball ratio of 1.0, grinding concentration of 70%. And the grinding effect of stirring mill is better. The specific productivity of -0.038 mm is 3 636.20 kg/(m3·h), and the grinding efficiency is 71.93 kg/(kW·h). The analysis of samples with the same fineness shows that the content of superfine and coarser particles is relatively small in stirred mill products, and the dissociation degree of useful mineral monomer is 4.5% ~ 8% higher than that of ball milling. The reverse flotation test shows that the iron grade and recovery rate of concentrate can be increased by 0.94% and 2.99%, respectively. Therefore, agitation mill has better grinding effect and flotation index than ball mill.
-
Key words:
- stirring mill /
- ball mill /
- Donganshan iron ore /
- specific productivity /
- grinding efficiency /
- degree of liberation
-
-
表 1 我国铁矿石供需量及对外依存情况
Table 1. The iron ore supply, demand and foreign dependence of China
年份 粗钢产量/亿t 铁矿石用量/亿t 铁矿石进口量/亿t 对外依存度/% 2015 8.04 11.41 9.53 84.20 2016 8.08 11.47 10.24 86.80 2017 8.32 12.29 10.75 86.70 2018 9.28 12.18 10.38 85.10 2019 9.96 13.05 10.70 81.10 表 2 铁矿石样品的化学多元素组成
Table 2. Chemical multi-element composition of iron ore samples
/% 成分 TFe FeO SiO2 Al2O3 CaO MgO S P 烧失 含量 33.35 5.84 45.78 0.59 0.71 0.62 0.02 0.08 3.28 表 3 东鞍山铁矿石铁化学物相分析结果
Table 3. Chemical phase analysis of iron ore in Donganshan
/% 铁物相 赤褐铁矿中的铁 磁性铁矿物中的铁 碳酸铁矿物中的铁 硅酸铁矿物中的铁 硫化铁矿物中的铁 TFe 含量 24.05 6.94 2.45 0.10 0.03 33.57 分布率 71.65 20.69 7.30 0.30 0.08 100.00 表 4 矿石中矿物组成及含量统计结果
Table 4. Statistics of mineral composition and content in ore
/% 矿物名称 赤铁矿 磁铁矿 黄铁矿 褐铁矿 石英 绿泥石 碳酸盐矿物 含量 29.29 16.78 0.15 0.01 34.12 12.57 7.08 表 5 原矿粒度组成
Table 5. Grain-size composition of raw ore
/% 粒级/μm +100 -100+74 -74+45 -45+38 -38+10 -10 合计 产率/% 14.72 10.57 24.75 5.74 34.13 10.09 100.00 累计/% 100.00 85.28 74.71 49.96 44.22 10.09 — 表 6 主要矿物嵌布粒度分布
Table 6. Distribution of main mineral dissemination size
/% 粒度/μm +150 -150+100 -100+75 -75+53 -53+37 -37 赤铁矿 含量/% 8.65 11.12 10.48 12.67 20.61 36.47 累计/% —— 19.77 30.25 42.92 63.53 100.00 磁铁矿 含量/% 10.98 12.88 10.57 15.08 20.48 30.01 累计/% —— 23.86 34.43 49.50 69.99 100.00 表 7 不同球径最佳搅拌转速的磨矿效果对比
Table 7. Comparison of grinding effect of different ball diameter and optimum stirring speed
介质尺寸/mm 转速率/(r·min-1) 功率/W -0.038 mm比生产率/kg·(m3·h)-1 -0.038 mm磨矿效率/kg·(kW·h)-1 2 1 050 85.78 2 878.93 60.08 4 750 112.30 4 296.55 68.49 6 650 101.85 4 062.23 71.39 表 8 搅拌磨产品铁矿物单体解离度
Table 8. Dissociation degree of iron mineral monomer in stirred mill products
/% 磨矿时间/min 0 1 3 5 7 9 铁矿物解离度 51.35 58.76 76.67 83.66 86.22 89.10 表 9 球磨产品铁矿物单体解离度
Table 9. Dissociation products of ball mill products
/% 磨矿时间/min 0 7.5 12.5 20 30 40 60 90 铁矿物解离度 51.35 65.84 72.75 74.85 77.41 79.52 82.62 85.99 表 10 两种磨矿产品反浮选指标对比
Table 10. Comparison of reverse flotation indexes of two grinding products
/% 产品 铁品位 铁回收率 球磨机 搅拌磨机 球磨机 搅拌磨机 浮选精矿 65.34 66.28 79.44 82.43 浮选尾矿 20.6 18.11 20.56 17.57 -
[1] 韩跃新, 李艳军, 高鹏, 等. 复杂难选铁矿石悬浮磁化焙烧-高效分选技术[J]. 钢铁研究学报, 2019, 31(2): 89-94. https://www.cnki.com.cn/Article/CJFDTOTAL-IRON201902001.htm
[2] 芦丹. 中国铁矿石国际贸易现状与战略分析——评《中国铁矿石资源国际合作研究》[J]. 矿业研究与开发, 2019, 39(12): 177. https://www.cnki.com.cn/Article/CJFDTOTAL-KYYK201912034.htm
[3] 祝昕冉. 镜铁山式铁矿石悬浮磁化焙烧物相转化基础研究[D]. 沈阳: 东北大学, 2020.
[4] 王嫱. 2018年全球铁矿资源供需形势分析[J]. 中国国土资源经济, 2020, 33(3): 59-68. https://www.cnki.com.cn/Article/CJFDTOTAL-ZDKJ202003012.htm
[5] 韩跃新, 高鹏, 李艳军, 等. 我国铁矿资源"劣质能用、优质优用"发展战略研究[J]. 金属矿山, 2016, 486(12): 2-8. https://www.cnki.com.cn/Article/CJFDTOTAL-JSKS201612003.htm
[6] 胡国辉, 张廷龙, 宋现洲, 等. 新型陶瓷球在大型立式搅拌磨上的应用初探[J]. 矿山机械, 2018, 46(10): 30-32. doi: 10.3969/j.issn.1001-3954.2018.10.008
[7] 蒋述兴, 王秋红. 高纯超细石英微粉的制备方法研究[J]. 矿产保护与利用, 2009(4): 15-19. http://kcbh.cbpt.cnki.net/WKD/WebPublication/paperDigest.aspx?paperID=eb9ec7b5-fa29-426a-838a-d150f090a3e2
[8] 卢世杰, 孙小旭, 何建成, 等. 典型湿式搅拌细磨技术与应用进展[J]. 矿产保护与利用, 2020, 40(1): 159-165. http://kcbh.cbpt.cnki.net/WKD/WebPublication/paperDigest.aspx?paperID=5efc2888-fecc-4bf5-b17d-e9c7a604c9d4
[9] 宫贵臣, 刘杰, 韩跃新, 等. 超级铁精矿高效制备试验研究[J]. 矿产综合利用, 2018, 212(4): 42-45. https://www.cnki.com.cn/Article/CJFDTOTAL-KCZL201804009.htm
[10] XIAO XIAO, ZHANG GUOWANG, FENG QIMING, et al. The liberation effect of magnetite fine ground by vertical stirred mill and ball mill[J]. Minerals Engineering, 2012, 34: 63-69. http://www.sciencedirect.com/science/article/pii/S0892687512001549
[11] ZHANG XIAOLONG, HAN YUEXIN, GAO PENG, et al. Effects of particle size and ferric hydroxo complex produced by different grinding media on the flotation kinetics of pyrite[J]. Powder Technology, 2020, 360: 1028-1036. http://www.sciencedirect.com/science/article/pii/S0032591019309581
[12] 韩彬, 莫峰, 贾素娥, 等. 纳米陶瓷球在复杂多金属矿细磨的应用研究[J]. 有色金属(选矿部分), 2019(4): 40-44. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXK201904008.htm
[13] 季理沅. 电气石粉的超细研磨工艺研究[J]. 矿产保护与利用, 2003(3): 23-26. http://kcbh.cbpt.cnki.net/WKD/WebPublication/paperDigest.aspx?paperID=81ad2886-aa4d-4e62-a672-3070a1b3bfe8
[14] GAO MW, FORSSBERG E. Prediction of product size distributions for a stirred ball mill[J]. Powder Technology, 1995, 84(2): 101-106. http://www.sciencedirect.com/science/article/pii/003259109502990J
[15] 卢冀伟. 东鞍山难选铁矿石中菱铁矿的分离与利用[D]. 沈阳: 东北大学, 2010.
[16] 高鹏, 余建文, 张淑敏, 等. 东鞍山铁矿混磁精矿悬浮焙烧-弱磁选试验研究[J]. 金属矿山, 2016, 486(12): 18-21. https://www.cnki.com.cn/Article/CJFDTOTAL-JSKS201612006.htm
[17] 李艳军, 郭旺, 王绍兴, 等. 搅拌磨与球磨磨矿对比试验[J]. 东北大学学报(自然科学版), 2017, 38(4): 562-565, 603. https://www.cnki.com.cn/Article/CJFDTOTAL-DBDX201704022.htm
[18] 刘雁翎, 郭旺, 高鹏, 等. 搅拌磨在铁矿细磨中的应用研究[J]. 矿业工程, 2016, 14(2): 29-31. https://www.cnki.com.cn/Article/CJFDTOTAL-GWKS201602010.htm
[19] 王洋, 郭旺, 高鹏, 等. 搅拌磨机在弓长岭选厂再磨作业中的试验研究[J]. 金属矿山, 2019, 512(2): 173-177. https://www.cnki.com.cn/Article/CJFDTOTAL-JSKS201902035.htm
[20] 袁帅, 刘杰, 韩跃新, 等. 搅拌磨在关宝山铁矿二段磨矿中的应用试验[J]. 金属矿山, 2017(8): 91-94. https://www.cnki.com.cn/Article/CJFDTOTAL-JSKS201708016.htm
-