Flotation Behavior Research on Collector Combination of Novel Fatty Acid and Chelating Collector on Wolframite and Gangue Minerals
-
摘要:
螯合类捕收剂与脂肪酸类捕收剂的组合使用是黑钨矿浮选的重要研究方向。采用单矿物试验方法研究了GYB螯合捕收剂和731、GYR、TAB-3三种代表性脂肪酸类捕收剂联用对黑钨矿和脉石矿物浮选行为的影响,并采用表面电位测定、红外光谱测定方法,对GYB、TAB-3以及两种捕收剂联用的作用机理进行了探讨。结果表明:GYB与脂肪酸捕收剂联用,三种组合捕收剂均使黑钨矿浮选最高回收率提高至70%以上,捕收剂总用量降低约1/2;联用时三种脂肪酸捕收剂中TAB-3药剂对黑钨矿的捕收能力最强,黑钨矿回收率为78%,对萤石、石英、方解石脉石矿物的捕收能力最弱;GYB与TAB-3联用使黑钨矿表面动电位负移,黑钨矿表面红外光谱中GYB的C=N伸缩振动吸收峰和TAB-3的C-H伸缩振动峰均向高波数移动,捕收剂在黑钨矿的表面吸附能力比单独使用时增强,存在化学吸附形式。
Abstract:The combined use of fatty acid collectors and chelating collectors is an important research direction for wolframite flotation. The single mineral test method was used to study the effect of the combination of GYB chelating collector and three representative fatty acid collectors of 731, GYR and TAB-3 on the flotation behavior of wolframite and gangue minerals.Furthermore, the mechanism of combined use of GYB, TAB-3 and the two collectors were discussed by Zeta potential measurement, Infrared spectroscopy methods. The results showed that the combined use of GYB and fatty acid collectors increased the maximum recovery of wolframite flotation to above 70%, and reduced the total dosage of collectors by about 1/2; among the three fatty acid collectors, TAB-3 reagent had the strongest collecting ability to wolframite, which recovery of wolframite was 78%, and the weakest collecting ability to fluorite, quartz, calcite gangue minerals; the combination of GYB and TAB-3 made the surface potential of wolframite move negatively, and the absorption peaks of the infrared spectrum on its surface shift to a high wave number, such as the C=N stretching vibration absorption peak of GYB and the C-H stretching vibration peak of TAB-3. Then the adsorption capacity of the two collectors on the wolframite surface was stronger than the collector was used alone, and the adsorption form was chemical adsorption.
-
Key words:
- wolframite /
- TAB-3 collector /
- flotation /
- mechanism
-
-
[1] 高玉德. 我国钨矿资源特点及选矿工艺研究进展[J]. 中国钨业, 2016, 31(5): 35-39. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGWU201605007.htm
[2] 付广钦. 细粒级黑钨矿的浮选工艺及浮选药剂的研究[D]. 长沙: 中南大学, 2010.
[3] 许海峰, 李文风, 陈雯. 钨矿浮选捕收剂研究现状及新药剂的制备与工业应用[J]. 中国钨业, 2019, 34(1): 37-44+57. doi: 10.3969/j.issn.1009-0622.2019.01.006
[4] 王小生, 高湘海, 龙冰, 等. 湖南柿竹园柴山井下复杂低品位多金属原矿白钨矿选矿工艺研究[J]. 矿冶, 2016, 25(6): 27-31. doi: 10.3969/j.issn.1005-7854.2016.06.006
[5] 董大刚. 组合捕收剂在矿物浮选中的应用及发展前景[J]. 中国钨业, 2017, 32(4): 29-34. doi: 10.3969/j.issn.1009-0622.2017.04.006
[6] 杨应林. 黑白钨共生矿混合浮选药剂及其作用机理研究[D]. 长沙: 中南大学, 2012.
[7] 周晓彤, 邓丽红, 关通, 等. 从某低品位多金属矿中回收黑白钨矿的选矿试验研究[J]. 中国矿业, 2011, 20(7): 86-89. doi: 10.3969/j.issn.1004-4051.2011.07.022
[8] 邬海滨, 李继福, 徐晓衣, 等. "浮-磁-浮"联合工艺回收某黑钨细泥的试验研究[J]. 中国钨业, 2017, 32(1): 41-46. doi: 10.3969/j.issn.1009-0622.2017.01.008
[9] 付广钦, 周晓彤, 邓丽红, 等. 某难选黑白钨多金属矿中黑钨矿的选矿试验研究[J]. 材料研究与应用, 2014, 8(4): 268-272 doi: 10.3969/j.issn.1673-9981.2014.04.014
[10] 徐龙华, 田佳, 巫侯琴, 等. 组合捕收剂在矿物表面的协同效应及其浮选应用综述[J]. 矿产保护与利用, 2017(2): 107-112. http://kcbh.cbpt.cnki.net/WKD/WebPublication/paperDigest.aspx?paperID=7068e474-71c6-4dcc-b4c0-0534a95e29a7
[11] 梁瑞禄, 石大新. 浮选药剂的混合使用及其协同效应[J]. 国外金属矿选矿, 1989(4): 18-29. https://www.cnki.com.cn/Article/CJFDTOTAL-JSXK198904003.htm
[12] 尚兴科, 周晓彤. 难免金属离子对TAB-3药剂浮选黑钨矿的影响[J]. 材料研究与应用, 2018, 12(2): 138-142. https://www.cnki.com.cn/Article/CJFDTOTAL-GDYS201802014.htm
[13] 陈万雄, 叶志平. 硝酸铅活化黑钨矿浮选的研究[J]. 广东有色金属学报, 1999, 9(1): 13-17. https://www.cnki.com.cn/Article/CJFDTOTAL-GDYS901.002.htm
[14] ZHAO G, WANG S, ZHONG H. Study on the activation of scheelite and wolframite by lead nitrate[J]. Minerals, 2015, 5(2): 247-258. doi: 10.3390/min5020247
[15] 孙伟, 王若林, 胡岳华, 等. 矿物浮选过程中铅离子的活化作用及新理论[J]. 有色金属(选矿部分), 2018, 40(2): 91-98. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXK201802020.htm
[16] 高玉德, 邱显扬, 夏启斌, 等. 苯甲羟肟酸与黑钨矿作用机理的研究[J]. 广东有色金属学报, 2001, 11(2): 92-95. https://www.cnki.com.cn/Article/CJFDTOTAL-GDYS200102003.htm
[17] 陈允魁. 红外吸收光谱及其应用[M]. 上海: 上海交通大学出版社, 1993.
-