湿法炼锌渣柠檬酸浸出回收钴、锌和镍

王俊杰, 谈定生, 丁家杰, 陈哲, 李启文, 谢昀映, 杨健, 丁伟中. 湿法炼锌渣柠檬酸浸出回收钴、锌和镍[J]. 矿产保护与利用, 2021, 41(2): 137-143. doi: 10.13779/j.cnki.issn1001-0076.2021.02.019
引用本文: 王俊杰, 谈定生, 丁家杰, 陈哲, 李启文, 谢昀映, 杨健, 丁伟中. 湿法炼锌渣柠檬酸浸出回收钴、锌和镍[J]. 矿产保护与利用, 2021, 41(2): 137-143. doi: 10.13779/j.cnki.issn1001-0076.2021.02.019
WANG Junjie, TAN Dingsheng, DING Jiajie, CHEN Zhe, LI Qiwen, XIE Yunying, YANG Jian, DING Weizhong. Experimental Study on Leaching of Valuable Metals from Purification Residue of Zinc Hydrometallurgy[J]. Conservation and Utilization of Mineral Resources, 2021, 41(2): 137-143. doi: 10.13779/j.cnki.issn1001-0076.2021.02.019
Citation: WANG Junjie, TAN Dingsheng, DING Jiajie, CHEN Zhe, LI Qiwen, XIE Yunying, YANG Jian, DING Weizhong. Experimental Study on Leaching of Valuable Metals from Purification Residue of Zinc Hydrometallurgy[J]. Conservation and Utilization of Mineral Resources, 2021, 41(2): 137-143. doi: 10.13779/j.cnki.issn1001-0076.2021.02.019

湿法炼锌渣柠檬酸浸出回收钴、锌和镍

详细信息
    作者简介: 王俊杰(1995-), 男, 河南洛阳人, 硕士, 主要研究方向为湿法冶金。E-mail: w1159484422@163.com
    通讯作者: 谈定生(1963-), 男, 博士, 副教授, 主要研究方向为湿法冶金。E-mail: tds1963@163.com
  • 中图分类号: X758

Experimental Study on Leaching of Valuable Metals from Purification Residue of Zinc Hydrometallurgy

More Information
  • 研究了用柠檬酸从湿法炼锌净化渣中回收有价金属的工艺方法。采用单因素浸出试验,探讨了净化渣中有价金属浸出的行为规律。分别考察了柠檬酸浓度、浸出温度、液固比、搅拌速度、pH值和浸出时间对有价金属浸出率的影响。结果表明:在柠檬酸浓度0.8 mol/L、浸出温度60℃、液固比10:1、搅拌速度200 r/min、pH 1.0、浸出时间90 min条件下,锌、镍、铜的浸出率分别为79.60%、75.09%、9.70%,钴的浸出率高达97.64%。本研究为湿法炼锌净化渣的综合回收利用提供了一种新的途径。

  • 加载中
  • 图 1  湿法炼锌净化渣XRD图谱

    Figure 1. 

    图 2  预处理后湿法炼锌净化渣XRD图谱

    Figure 2. 

    图 3  苹果酸对金属浸出率的影响

    Figure 3. 

    图 4  柠檬酸对金属浸出率的影响

    Figure 4. 

    图 5  柠檬酸浓度对金属浸出率的影响

    Figure 5. 

    图 6  浸出温度对金属浸出率的影响

    Figure 6. 

    图 7  液固比对金属浸出率的影响

    Figure 7. 

    图 8  浸出时间对金属浸出率的影响

    Figure 8. 

    图 9  搅拌速度对金属浸出率的影响

    Figure 9. 

    图 10  pH值对金属浸出率的影响

    Figure 10. 

    图 11  浸出残渣XRD图谱

    Figure 11. 

    表 1  湿法炼锌净化渣主要化学成分

    Table 1.  Main chemical components of purification residue from zinc hydrometallurgy  /%

    元素 Co Ni Cu Zn Fe Al
    含量 5.98 1.40 0.82 11.04 1.77 0.058
    下载: 导出CSV

    表 2  优化条件下的综合试验结果

    Table 2.  Comprehensive experimental results under optimized conditions

    序号 浸出率/%
    Co Ni Cu Zn
    1 98.34 71.77 7.60 76.94
    2 98.52 77.16 9.81 80.77
    3 96.07 76.34 11.68 81.09
    平均值 97.64 75.09 9.70 79.60
    下载: 导出CSV
  • [1]

    何耀. 锌冶炼工艺现状及有价金属高效回收利用新工艺[J]. 矿冶, 2020, 29(4): 73-79. doi: 10.3969/j.issn.1005-7854.2020.04.014

    [2]

    王振银, 高文成, 温建康, 等. 锌浸出渣有价金属回收及全质化利用研究进展[J]. 工程科学学报, 2020, 42(11): 1400-1410. https://www.cnki.com.cn/Article/CJFDTOTAL-BJKD202011002.htm

    [3]

    汤裕源, 刘丽. 锌冶炼工艺综述与展望[J]. 云南冶金, 2020, 49(6): 38-41. doi: 10.3969/j.issn.1006-0308.2020.06.008

    [4]

    TANG L, TANG C, XIAO J, et al. A cleaner process for valuable metals recovery from hydrometallurgical zinc residue[J]. Journal of Cleaner Production, 2018, 201: 764-773. doi: 10.1016/j.jclepro.2018.08.096

    [5]

    雷霆, 陈利生, 余宇楠. 锌冶金[M]. 北京: 冶金工业出版社, 2012: 6-7.

    [6]

    蓝碧波, 丁文涛, 申开榜, 等. 从湿法炼锌钴渣中回收锌富集钴试验研究[J]. 湿法冶金, 2018, 37(6): 457-460. https://www.cnki.com.cn/Article/CJFDTOTAL-SFYJ201806008.htm

    [7]

    马进, 何国才, 程亮, 等. 湿法炼锌净化镍钴渣全湿法回收新工艺[J]. 有色金属(冶炼部分), 2013, (12): 11-14. https://www.cnki.com.cn/Article/CJFDTOTAL-METE201312004.htm

    [8]

    李贺, 陈露露, 王海北, 等. 锌冶炼净化钴渣综合回收工艺研究[J]. 有色金属(冶炼部分), 2019, (9): 69-71. https://www.cnki.com.cn/Article/CJFDTOTAL-METE201909012.htm

    [9]

    ASHTARI P, POURGHAHRAMANI P. Hydrometallurgical recycling of cobalt from zinc plants residue[J]. Journal of Material Cycles & Waste Management, 2018, 20: 155-166. doi: 10.1007/s10163-016-0558-0

    [10]

    BEHNAJADY B, MOGHADDAM J. Selective leaching of zinc from hazardous As-bearing zinc plant purification filter cake[J]. Chemical Engineering Research Design, 2017, 117: 564-574. doi: 10.1016/j.cherd.2016.11.019

    [11]

    王艳, 周春山. 铅锌冶炼渣浸出液提取镓的研究[J]. 稀有金属与硬质合金, 2001, (4): 7-9. doi: 10.3969/j.issn.1004-0536.2001.04.002

    [12]

    周涛, 徐莉萍, 范百林, 等. 从废旧钴镍锰酸锂电池中回收有价金属的新工艺[J]. 徐州工程学院学报(自然科学版), 2017, 32(1): 6-12. https://www.cnki.com.cn/Article/CJFDTOTAL-OXZG201701002.htm

    [13]

    方兆珩. 浸出[M]. 北京: 冶金工业出版社, 2007: 1-3.

    [14]

    LI Q, ZHANG B, MIN X B, et al. Acid leaching kinetics of zinc plant purification residue[J]. Transactions of Nonferrous Metals Society of China, 2013, 23: 2786-2791. doi: 10.1016/S1003-6326(13)62798-3

    [15]

    RUSEN A, SUNKAR A S, TOPKAYA Y A. Zinc and lead extraction from Cinkur leach residues by using hydrometallurgical method[J]. Hydrometallurgy, 2008, 93: 45-50. doi: 10.1016/j.hydromet.2008.02.018

    [16]

    PENG P, XIE H Q, LU L Z. Leaching of a sphalerite concentrate with H2SO4-HNO3 solutions in the presence of C2Cl4[J]. Hydrometallurgy, 2005, 80: 265-271. doi: 10.1016/j.hydromet.2005.08.004

    [17]

    郑莹, 胡晨, 周洁, 等. 柠檬酸浸出废旧锂离子电池回收有价金属研究[J]. 电源技术, 2019, 43(10): 1653-1683. doi: 10.3969/j.issn.1002-087X.2019.10.020

    [18]

    朱显峰, 赵瑞瑞, 常毅, 等. 废旧锂离子电池三元正极材料酸浸研究[J]. 电池, 2017, 47(2): 105-108. https://www.cnki.com.cn/Article/CJFDTOTAL-DACI201702014.htm

    [19]

    LI L, GE J, WU F, et al. Recovery of cobalt and lithium from spent lithium ion batteries using organic citric acid as leachant[J]. Journal of Hazardous Materials, 2010, 176(1/2/3): 288-293. http://www.ncbi.nlm.nih.gov/pubmed/19954882

    [20]

    GOLMOHAMMADZADEH R, FARAJI F, RASHCHI F. Recovery of lithium and cobalt from spent lithium ion batteries (LIBs) using organic acids as leaching reagents: A review[J]. Resources, Conservation & Recycling, 2018, 136: 418-435. http://www.sciencedirect.com/science/article/pii/S0921344918301629

    [21]

    AHN J W, AHN H J, KIM M W. Chemical Leaching of Co, Cu, Ni, Al, Fe by Organic acid from Cobalt Concentrate[J]. Journal of the Korean Institute of Resources Recycling, 2011, 20(6): 63-70. doi: 10.7844/kirr.2011.20.6.063

    [22]

    HUANG K, INOUE K, HARADA H, et al. Leaching of heavy metals by citric acid from fly ash generated in municipal waste incineration plants[J]. Journal of Material Cycles and Waste Management, 2011, 13: 118-126. doi: 10.1007/s10163-011-0001-5

    [23]

    JIANG H, LI T Q, HAN X, et al. Effects of pH and low molecular weight organic acids on competitive adsorption and desorption of cadmium and lead in paddy soils[J]. Environmental Monitoring and Assessment, 2012, 184: 6325-6335. doi: 10.1007/s10661-011-2422-y

  • 加载中

(11)

(2)

计量
  • 文章访问数:  2542
  • PDF下载数:  80
  • 施引文献:  0
出版历程
收稿日期:  2021-02-16
刊出日期:  2021-04-25

目录