黑色TiO2/高岭石光催化剂的制备及其降解动力学研究

程港莉, 胡佩伟, 张炎, 高润琴. 黑色TiO2/高岭石光催化剂的制备及其降解动力学研究[J]. 矿产保护与利用, 2021, 41(3): 166-172. doi: 10.13779/j.cnki.issn1001-0076.2021.03.025
引用本文: 程港莉, 胡佩伟, 张炎, 高润琴. 黑色TiO2/高岭石光催化剂的制备及其降解动力学研究[J]. 矿产保护与利用, 2021, 41(3): 166-172. doi: 10.13779/j.cnki.issn1001-0076.2021.03.025
CHENG Gangli, HU Peiwei, ZHANG Yan, GAO Runqin. Study on Preparation and Photocatalytic Degradation Kinetics of Black TiO2/Kaolinite Composite[J]. Conservation and Utilization of Mineral Resources, 2021, 41(3): 166-172. doi: 10.13779/j.cnki.issn1001-0076.2021.03.025
Citation: CHENG Gangli, HU Peiwei, ZHANG Yan, GAO Runqin. Study on Preparation and Photocatalytic Degradation Kinetics of Black TiO2/Kaolinite Composite[J]. Conservation and Utilization of Mineral Resources, 2021, 41(3): 166-172. doi: 10.13779/j.cnki.issn1001-0076.2021.03.025

黑色TiO2/高岭石光催化剂的制备及其降解动力学研究

  • 基金项目:
    湖北省教育厅科学技术研究重点项目(D20191106);武汉科技大学大学生创新训练计划项目(20ZA076)
详细信息
    作者简介: 程港莉(1997-), 女, 硕士研究生, 主要从事环保矿物材料的研究, E-mail: glclucky@163.com
    通讯作者: 胡佩伟, 博士, 副教授, E-mail: pwhu@wust.edu.cn
  • 中图分类号: TB332.2

Study on Preparation and Photocatalytic Degradation Kinetics of Black TiO2/Kaolinite Composite

More Information
  • 黑色TiO2作为一种新型光催化材料被广泛关注,但利用黏土改性黑色TiO2来提升其应用性能却鲜有报道。以高岭石为原料,钛酸四丁酯为前驱体,通过溶剂热法合成黑色TiO2/高岭石(b-TiO2/Kaol)光催化剂。采用扫描电镜(SEM)、透射电镜(TEM)和X-射线光电子能谱(XPS)技术对材料微观形貌及表面结构进行表征。研究了制备条件、负载量对材料可见光催化性能的影响,并结合动力学模型考察了亚甲基蓝(MB)初始pH值对去除效果的影响。结果表明,当摩尔比n(Ti4+):n(BH4-)为1:0.56、n(HNO3):n(H2O)为1:11.5、合成时间为12 h、水热合成温度为180℃时,制备黑色TiO2(b-TiO2)光催化活性最强;b-TiO2负载量为20%制得的b-TiO2/Kaol具有最佳的光催化性能,对MB的去除率达89.7%,光催化降解过程符合一级动力学模型。MB溶液初始pH为5~7更有利于MB的去除。Ti3+的掺杂使得b-TiO2光响应范围扩大,高岭石改性b-TiO2增强了b-TiO2/Kaol的吸附能力,两者协同促进了光催化性能的提高。

  • 加载中
  • 图 1  n(Ti4+) : n(BH4-)(a)、n(HNO3) : n(H2O)(b)、合成时间(c)和温度(d)对b-TiO2性能的影响

    Figure 1. 

    图 2  溶剂热合成时间(a)和温度(b)对b-TiO2/Kaol光催化降解MB的影响

    Figure 2. 

    图 3  不同样品的光催化性能比较(a)和b-TiO2负载量对b-TiO2/Kaol去除MB的影响(b)

    Figure 3. 

    图 4  高岭石的SEM图(a)、b-TiO2/Kaol的SEM图(b), TEM图(c)和HRTEM图(d)

    Figure 4. 

    图 5  b-TiO2/Kaol的XPS整谱图(a)和Ti2p高分辨图谱(b)

    Figure 5. 

    图 6  MB溶液初始pH对光催化降解过程的影响(a)及其准一级动力学模型(b)

    Figure 6. 

    表 1  不同MB初始pH对应的降解方程及参数

    Table 1.  Degradation equation and parameters corresponding to different initial pH of MB

    MB初始pH 光催化降解方程 k/min-1 t1/2/h R2
    2 lnCt=2.0926-0.0358t 0.0358 19.36 0.9866
    5 lnCt=1.5699-0.1279t 0.1279 5.42 0.9714
    7 lnCt=1.7738-0.0932t 0.0932 7.44 0.9792
    9 lnCt=2.1361-0.0749t 0.0749 9.25 0.9726
    11 lnCt=2.0926-0.1299t 0.1299 5.34 0.9830
    下载: 导出CSV
  • [1]

    CHEN X, LIU L, YU P Y, et al. Increasing solar absorption for photocatalysis with black hydrogenated titanium dioxide nanocrystals[J]. Science, 2011, 331(6018): 746-750. doi: 10.1126/science.1200448

    [2]

    GE J J, DU G H, KALAM A, et al. Oxygen vacancy-rich black TiO2 nanoparticles as a highly efficient catalyst for Li-O2 batteries[J]. Ceramics International, 2021, 47: 6965-6971. doi: 10.1016/j.ceramint.2020.11.045

    [3]

    HAN L J, SU B T, LIU G, et al. Synthesis of oxygen vacancy-rich black TiO2 nanoparticles and the visible light photocatalytic performance[J]. Molecular catalysis, 2018, 456: 96-101. doi: 10.1016/j.mcat.2018.07.006

    [4]

    NALDONI A, ALLIETA M, SANTANGELO S, et al. Effect of nature and location of defects on bandgap narrowing in black TiO2 nanoparticles[J]. Journal of the American Chemical Society, 2012, 134(18): 7600-7603. doi: 10.1021/ja3012676

    [5]

    SUN B J, ZHOU W, LI H Z, et al. Magnetic Fe2O3/mesoporous black TiO2 hollow sphere heterojunctions with wide-spectrum response and magnetic separation[J]. Applied Catalysis B: Environmental, 2018, 221: 235-242. doi: 10.1016/j.apcatb.2017.09.023

    [6]

    JO WK, YOO HJ. Combination of ultrasound-treated 2D g-C3N4 with Ag/black TiO2 nanostructure for improved photocatalysis[J]. Ultrasonics Sonochemistry, 2018, 42: 517-525. doi: 10.1016/j.ultsonch.2017.12.019

    [7]

    CAO Y, XING Z P, HU M Q, et al. Mesoporous black N-TiO2-x hollow spheres as efficient visible-light-driven photocatalysts[J]. Journal of Catalysis, 2017, 356: 246-254. doi: 10.1016/j.jcat.2017.10.023

    [8]

    DUAN Y Y, ZHANG M, WANG L, et al. Plasmonic Ag-TiO2-x nanocomposites for the photocatalytic removal of NO under visible light with high selectivity: The role of oxygen vacancies[J]. Applied Catalysis B: Environmental, 2017, 204: 67-77. doi: 10.1016/j.apcatb.2016.11.023

    [9]

    ZHOU G, SHEN L, XING Z, et al. Ti3+ self-doped mesoporous black TiO2/graphene assemblies for unpredicted-high solar-driven photocatalytic hydrogen evolution[J]. Journal of colloid and interface science, 2017, 505: 1031-1038. doi: 10.1016/j.jcis.2017.06.097

    [10]

    SW A, JC A, JM A, et al. Defective black Ti3+ self-doped TiO2 and reduced graphene oxide composite nanoparticles for boosting visible-light driven photocatalytic and photoelectrochemical activity[J]. Applied Surface Science, 2019, 467/468: 45-55. doi: 10.1016/j.apsusc.2018.10.138

    [11]

    HU P W, YANG H M. Insight into the physicochemical aspects of kaolins with different morphologies[J]. AppliedClay Science, 2013, 74: 58-65. http://www.sciencedirect.com/science/article/pii/S016913171200261X

    [12]

    LI X Y, PENG K, CHEN H X, et al. TiO2 nanoparticles assembled on kaolinites with different morphologies forefficient photocatalytic performance[J]. Scientific Reports, 2018, 8: 11663-11. doi: 10.1038/s41598-018-29563-8

    [13]

    NIU J N, WU A C, WANG D X, et al. Coloading of TiO2 and C3N4 on kaolinite nanotubes for obviously improved photocatalytic performance in degradation of methylene blue dye[J]. Materials Letters, 2018, 230: 32-35. doi: 10.1016/j.matlet.2018.07.073

    [14]

    HOANG S, GUO S, HAHN N T, et al. Visible light driven photoelectrochemical water oxidation on nitrogen-modified TiO2 nanowires[J]. Nano Letters, 2012, 12(1): 26-32. doi: 10.1021/nl2028188

    [15]

    因博, 王际童, 徐伟, 等. 中孔炭负载二氧化钛光催化剂的制备及降解甲基橙[J]. 新型炭材料, 2013, 28(1): 47-54. https://www.cnki.com.cn/Article/CJFDTOTAL-XTCL201301012.htm

    [16]

    HOFFMANN M R, MARTIN S T, CHOI W, et al. Environmental applications of semiconductor photocatalysis[J]. Chemical Reviews, 1995, 95(1): 69-96. doi: 10.1021/cr00033a004

  • 加载中

(6)

(1)

计量
  • 文章访问数:  1079
  • PDF下载数:  102
  • 施引文献:  0
出版历程
收稿日期:  2021-04-29
刊出日期:  2021-06-25

目录