-
摘要:
研究了超声波作用下黄铁矿的浮选行为。结果表明,在磨矿细度为-0.074 mm占57%、丁基黄药200 g/t、起泡剂20 g/t的浮选最佳条件下,在超声波频率为135 kHz和功率为100 W时可以使黄铁矿回收率提高13.86%。通过超声波浮选和常规浮选的动力学分析发现,高频超声波对-150+100μm粒级的黄铁矿影响最大,使回收率提高了7.54%;对该粒级的试验数据利用五个动力学模型拟合可知,一阶经典模型的拟合效果最好,动力学方程可分别表示为超声波浮选:ε=26.27[1-exp(-0.601t)]、常规浮选:ε=18.01[1-exp(-0.671t)]。利用SEM分析发现,超声波主要通过对黄铁矿表面的清洗作用,去除了表面罩盖的矿泥等脉石矿物,提高了黄铁矿的回收率。
Abstract:This paper studies the flotation behavior of pyrite under the action of ultrasound.The results show that under the best conditions of flotation with a grinding fineness of-0.074 mm accounting for 57%, 200 g/t butyl xanthate, and 20 g/t foaming agent, the ultrasonic frequency is 135 kHz and the power is 100 W can increase the recovery rate of pyrite by 13.86%. The results of ultrasonic flotation and standard flotation showed that the high frequency ultrasonic treatment had the greatest influence on the flotation of pyrite of -150 μm+100 μm size fraction, and the recovery was improved by 7.54%. Five kinetic models are used to fit the experimental data of this particle size. The results show that the classical first-order flotation kinetic model gave excellent fits to the experimental data, and the description of kinetic equation is ultrasonic treatment flotation: ε=26.27[1-exp(-0.601 t)], standard flotation: ε=18.01[1-exp(-0.671 t)], respectively SEM analysis showed that the recovery of pyrite was improved mainly by the cleaning of surface.
-
Key words:
- ultrasonic treatment /
- pyrite /
- flotation kinetics /
- surface cleaning
-
-
表 1 原矿主要化学成分分析
Table 1. The analysis results of chemical multi-element
/% 元素 Cu S Fe Co TiO2 Al2O3 CaO K2O 含量 0.23 14.51 20.32 0.072 0.34 6.57 9.87 1.35 元素 Na2O F Pb Zn As Mn C SiO2 含量 0.21 0.023 0.54 0.223 0.003 0.34 1.5 15.8 表 3 超声波处理对黄铁矿浮选动力学的影响
Table 3. Effect of the ultrasonic treatment on the flotation recovery of pyrite
模型1 模型2 模型3 模型4 模型5 k, min-1 ε∞/% R2 k, min-1 ε∞/% R2 k, min-1 ε∞/% R2 k, min-1 ε∞/% R2 k, min-1 ε∞/% R2 常规浮选 0.671 18.01 0.990 2 1.249 20.80 0.983 8 1.539 22.96 0.975 0 0.650 22.96 0.975 0 1.262 25.70 0.969 7 超声波浮选 0.601 26.27 0.992 5 1.097 30.61 0.987 5 1.799 34.20 0.980 4 0.556 34.20 0.980 4 1.058 38.63 0.976 2 -
[1] 苏超, 申培伦, 李佳磊, 等. 黄铁矿浮选的抑制与解抑活化研究进展[J]. 化工进展, 2019, 38(4): 1921-1929. https://www.cnki.com.cn/Article/CJFDTOTAL-HGJZ201904038.htm
[2] 宋国君, 邓久帅, 先永骏, 等. 黄铁矿解抑活化机理研究现状及进展[J]. 矿物学报, 2017, 37(3): 328-332. https://www.cnki.com.cn/Article/CJFDTOTAL-KWXB201703010.htm
[3] 吕沛超, 卢毅屏, 冯博, 等. 超声波对金川硫化镍矿浮选的作用研究[J]. 有色金属(选矿部分), 2015(4): 34-38. doi: 10.3969/j.issn.1671-9492.2015.04.009
[4] 欧阳嘉骏, 陈艺锋, 王宇菲, 等. 超声波强化铝土矿浮选脱硫研究[J]. 中国矿山工程, 2015, 44(2): 15-18. doi: 10.3969/j.issn.1672-609X.2015.02.005
[5] 康文泽, 荀海鑫, 李明明. 超声波预处理对稀缺难浮煤浮选的作用[J]. 中国矿业大学学报, 2013, 42(4): 625-630. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGKD201304017.htm
[6] 杨丽君, 梁殿印, 韩登峰, 等. 超声波对浮选柱选钼过程中细粒尾矿再选的试验研究[J]. 有色金属(选矿部分), 2011(4): 51-55. doi: 10.3969/j.issn.1671-9492.2011.04.013
[7] OZKAN S G. Beneficiation of magnesite slimes with ultrasonic treatment[J]. Minerals Engineering, 2002, 15(1): 99-101. http://download.xuebalib.com/3bveodCEcKDj.pdf?down
[8] KANG W, XUN H, KONG X, et al. Effects from changes in pulp nature after ultrasonic conditioning on high-sulfur coal flotation[J]. Mining Science and Technology (China), 2009, 19(4): 498-502+507. doi: 10.1016/S1674-5264(09)60093-4
[9] ALDRICHl C, FENG D. Effect of ultrasonic preconditioning of pulp on the flotation of sulphide ores[J]. Minerals Engineering, 1999, 12(6): 701-707. doi: 10.1016/S0892-6875(99)00053-9
[10] 缪亚兵, 邓海波, 徐轲. 萤石在油酸和水玻璃体系中的浮选动力学模型及浮选行为研究[J]. 化工矿物与加工, 2015, 44(7): 13-17. https://www.cnki.com.cn/Article/CJFDTOTAL-HGKJ201507005.htm
[11] 崔伟勇, 张覃, 邱跃琴, 等. 捕收剂GJBW作用下胶磷矿浮选动力学研究[J]. 化工矿物与加工, 2015, 44(1): 11-13. https://www.cnki.com.cn/Article/CJFDTOTAL-HGKJ201501004.htm
[12] 何丽萍. 铜铅锌硫化矿浮选动力学研究[D]. 赣州: 江西理工大学, 2008.
[13] ZHANG H, LIU J, CAO Y, et al. Effects of particle size on lignite reverse flotation kinetics in the presence of sodium chloride[J]. Powder technology, 2013, 246: 658-663. doi: 10.1016/j.powtec.2013.06.033
[14] TAO D. Role of bubble size in flotation of coarse and fine particles-a review[J]. Separation Science and Technology, 2005, 39(4): 741-760. doi: 10.1081/SS-120028444
[15] YUAN X M, PALSSON B I, FORSSBERG K S E. Statistical interpretation of flotation kinetics for a complex sulphide ore[J]. Minerals Engineering, 1996, 9(4): 429-442. doi: 10.1016/0892-6875(96)00028-3
[16] VIDELA A R, MORALES R, SAINT-JEAN T, et al. Ultrasound treatment on tailings to enhance copper flotation recovery[J]. Minerals Engineering, 2016, 99: 89-95. http://www.onacademic.com/detail/journal_1000039645119710_0d0d.html
-