铁矿石脱硅技术和浮选药剂研究进展

李颉, 毕云霄, 丁湛, 袁加巧, 柏少军. 铁矿石脱硅技术和浮选药剂研究进展[J]. 矿产保护与利用, 2021, 41(5): 149-159. doi: 10.13779/j.cnki.issn1001-0076.2021.05.021
引用本文: 李颉, 毕云霄, 丁湛, 袁加巧, 柏少军. 铁矿石脱硅技术和浮选药剂研究进展[J]. 矿产保护与利用, 2021, 41(5): 149-159. doi: 10.13779/j.cnki.issn1001-0076.2021.05.021
LI Jie, BI Yunxiao, DING Zhan, YUAN Jiaqiao, BO Shaojun. Research Progress on Desilication Technology and Flotation Reagent Regime of Iron Ore[J]. Conservation and Utilization of Mineral Resources, 2021, 41(5): 149-159. doi: 10.13779/j.cnki.issn1001-0076.2021.05.021
Citation: LI Jie, BI Yunxiao, DING Zhan, YUAN Jiaqiao, BO Shaojun. Research Progress on Desilication Technology and Flotation Reagent Regime of Iron Ore[J]. Conservation and Utilization of Mineral Resources, 2021, 41(5): 149-159. doi: 10.13779/j.cnki.issn1001-0076.2021.05.021

铁矿石脱硅技术和浮选药剂研究进展

  • 基金项目:
    国家自然科学基金项目(52164021);云南省科技计划项目(2019FB078)
详细信息
    作者简介: 李颉(1998-),男,硕士研究生,研究方向为浮选理论与工艺;E-mail:945312061@qq.com
    通讯作者: 柏少军(1983-),男,教授,博士,研究方向为浮选理论与资源综合利用;E-mail:baishaojun830829@126.com
  • 中图分类号: TD951.1;TD923+.1

Research Progress on Desilication Technology and Flotation Reagent Regime of Iron Ore

More Information
  • 硅是铁矿石中一种典型的有害杂质,降低铁精矿中硅含量一直是铁矿石分选的重要课题。对铁矿石脱硅工艺与浮选药剂制度的研究进展做了系统的综述,重点介绍了浮选脱硅的研究现状和发展趋势。文中指出含硅铁矿石钙离子活化—阴离子反浮选工艺具有广阔的应用前景,进一步提高浮选药剂的选择性和适应性具有重要的现实意义。

  • 加载中
  • 图 1  石英晶体结构[77]

    Figure 1. 

    图 2  多糖与金属氧化物表面反应

    Figure 2. 

    表 1  国外常用胺类捕收剂[54]

    Table 1.  Common amine collectors abroad

    商品名称 化学名称 饱和度
    Flotigam SA-B 十八酰胺醋酸盐 C1215%C1620%C1865%
    Flotgiam T2A-B 牛脂丙烯胺 C125%C1630%C1865%
    Collector 075/94 脂肪丙烯二胺
    HOE F2835-B 醚二胺醋酸盐 C12C13
    Flotigam EDA-B 醚胺醋酸盐 C10
    Flotigam EDA-3B 醚胺醋酸盐 C10
    MG-70-A5 醚胺醋酸盐 C18~10烃氧基
    MG-83-A 醚二胺醋酸盐
    MG-98-A3 醚胺醋酸盐
    ECNA 04D 醚胺 C12C13
    Nb 104 缩合胺 C18
    Nb 112 缩合胺 C8~10胺、C18缩合胺
    Colmin C12 醚胺醋酸盐
    Poliad A-3 醚胺醋酸盐
    下载: 导出CSV
  • [1]

    FILIPPOV L O, FILIPPOVA I V, SEVEROV V V. The use of collectors mixture in the reverse cationic flotation of magnetite ore: The role of Fe-bearing silicates[J]. Minerals Engineering, 2010, 23(2): 91-98. doi: 10.1016/j.mineng.2009.10.007

    [2]

    邹忠平, 项钟庸, 王刚. 《高炉炼铁工程设计规范》[C]. 中国钢铁年会暨宝钢学术年会. 2015.

    [3]

    YUAN S, ZHOU W, HAN Y, et al. Individual enrichment of manganese and iron from complex refractory ferromanganese ore by suspension magnetization roasting and magnetic separation[J]. Powder Technology, 2020, 373: 689-701. doi: 10.1016/j.powtec.2020.07.005

    [4]

    李博琦, 谢贤, 纪翠翠, 等. 鞍山地区贫磁铁矿选矿工艺试验[J]. 矿产综合利用, 2020(4): 93-99. doi: 10.3969/j.issn.1000-6532.2020.04.015

    [5]

    李亮, 李晓波, 徐宝金. 某低品位难选磁铁矿石选矿试验[J]. 现代矿业, 2020, 36(9): 142-144. doi: 10.3969/j.issn.1674-6082.2020.09.036

    [6]

    宛彦鑫, 马越, 胡海宽, 等. 新疆某贫铁矿石磁选试验研究[J]. 现代矿业, 2020, 36(10): 89-92. doi: 10.3969/j.issn.1674-6082.2020.10.027

    [7]

    张毅, 余莹, 张五志, 等. 鞍钢某铁尾矿磁化焙烧—磁选试验研究[J]. 金属矿山, 2021(7): 142-145. https://www.cnki.com.cn/Article/CJFDTOTAL-JSKS202107021.htm

    [8]

    张小龙, 韩跃新, 李艳军, 等. 大西沟菱铁矿石磁化焙烧—弱磁选试验研究[J]. 金属矿山, 2016(12): 22-26. doi: 10.3969/j.issn.1001-1250.2016.12.006

    [9]

    袁帅, 韩跃新, 李艳军, 等. 国外某赤铁矿石悬浮磁化焙烧—磁选试验[J]. 金属矿山, 2018(8): 70-72. https://www.cnki.com.cn/Article/CJFDTOTAL-JSKS201808014.htm

    [10]

    柯佳焱, 石云良, 肖金雄, 等. 俄罗斯某铁矿选矿工艺研究[J]. 矿冶工程, 2019, 39(6): 50-53. doi: 10.3969/j.issn.0253-6099.2019.06.012

    [11]

    SKR A, DN B, SSRA B. A review on the enrichment of iron values of low-grade Iron ore resources using reduction roasting-magnetic separation[J]. Powder Technology, 2020, 367: 796-808. doi: 10.1016/j.powtec.2020.04.047

    [12]

    RAYAPUDI V. Optimization of microwave carbothermal reduction for processing of banded hematite jasper ore[J]. Minerals Engineering, 2019, 138: 204-214. doi: 10.1016/j.mineng.2019.05.004

    [13]

    RATH S S, SAHOO H, DHAWAN N, et al. Optimal Recovery of Iron Values from a Low Grade Iron Ore using Reduction Roasting and Magnetic Separation[J]. Separation Science & Technology, 2014, 49(12): 1 927-1 936.

    [14]

    MA M. Froth Flotation of Iron Ores[J]. International Journal of Mining Engineering & Mineral Processing, 2012, 1(2): 56-61.

    [15]

    HOUOT R. Beneficiation of phosphatic ores through flotation: Review of industrial applications and potential developments[J]. International Journal of Mineral Processing, 1982, 9(4): 353-384. doi: 10.1016/0301-7516(82)90041-2

    [16]

    陈雯, 余永富. 铁矿石选矿近十年来技术进步[C]//中国冶金矿山企业协会(Metallurgical Mines'Association of China). 2013中国冶金矿山科技大会会刊. 北京: 中国冶金矿山企业协会, 2013: 15.

    [17]

    马鸣泽. 磁铁矿对微细粒级赤铁矿浮选的影响及其机理研究[D]. 昆明: 昆明理工大学, 2019.

    [18]

    宋国君. 大红山赤褐铁矿型次级精矿浮选提质试验研究[D]. 昆明: 昆明理工大学, 2018.

    [19]

    刘文宝. 羟丙基胺类捕收剂的合成及在铁矿石反浮选中的应用研究[D]. 沈阳: 东北大学, 2015.

    [20]

    MA X, MARQUES M, GONTIJO C. Comparative studies of reverse cationic/anionic flotation of Vale iron ore[J]. International Journal of Mineral Processing, 2011, 100(3/4): 179-183.

    [21]

    FILIPPOV L O, SEVEROV V V, FILIPPOVA I V. An overview of the beneficiation of iron ores via reverse cationic flotation[J]. International Journal of Mineral Processing, 2014, 127: 62-69. doi: 10.1016/j.minpro.2014.01.002

    [22]

    HOUOT R. Beneficiation of iron ore by flotation — Review of industrial and potential applications[J]. International Journal of Mineral Processing, 1983, 10(3): 183-204. doi: 10.1016/0301-7516(83)90010-8

    [23]

    FATMA H, ELRAHIEM A. Recent Trends in Flotation of Fine Particles[J]. Journal of Mining World Express, 2014, 3: 63-69. doi: 10.14355/mwe.2014.03.009

    [24]

    吴红, 齐美超, 李保健, 等. 张庄铁矿石提铁降硅选矿试验及超纯铁精矿探索试验[J]. 现代矿业, 2019, 35(6): 144-148. doi: 10.3969/j.issn.1674-6082.2019.06.042

    [25]

    廖祥, 刘艳杰, 许蕊, 等. 福建某超贫磁铁矿弱磁精反浮选提铁降硅试验[J]. 金属矿山, 2013(5): 75-77. doi: 10.3969/j.issn.1001-1250.2013.05.020

    [26]

    TOHRY A, DEHGHANI A. Effect of sodium silicate on the reverse anionic flotation of a siliceous-phosphorus iron ore[J]. Separation & Purification Technology, 2016, 164: 28-33.

    [27]

    勾金玲, 徐望华. 梅山铁矿铁精矿降硅选矿工艺试验[J]. 现代矿业, 2013, 29(7): 26-28+42. doi: 10.3969/j.issn.1674-6082.2013.07.007

    [28]

    宋乃斌. 齐大山铁矿石选矿技术研究综合评述[J]. 金属矿山, 2007(3): 1-5. https://www.cnki.com.cn/Article/CJFDTOTAL-JSKS200703000.htm

    [29]

    刘动. 反浮选应用于铁精矿提铁降硅的现状及展望[J]. 金属矿山, 2003(2): 38-42. https://www.cnki.com.cn/Article/CJFDTOTAL-JSKS200302012.htm

    [30]

    HAN K N, HEALY T W, FUERSTENAU D W. Mechanism of Adsorption of Fatty Acids and Other Surfactants at the Oxide-Water Interface[J]. Journal of Colloid and Interface Science, 1973, 44(3): 407-414. doi: 10.1016/0021-9797(73)90316-0

    [31]

    HUKKI R T, VARTIANEN O. An investigation of collecting effects of fatty acids in tall oil on oxide minerals particularly Ilemenite. AIChE Symposium Series, 1953, 71: 124-133.

    [32]

    QUAST, KEITH. Literature review on the use of natural products in the flotation of iron oxide ores[J]. Minerals Engineering, 2017, 108: 12-24. doi: 10.1016/j.mineng.2017.01.008

    [33]

    QUAST K B. A review of hematite flotation using 12-carbon chain collectors[J]. Minerals Engineering, 2000, 13(13): 1 361-1 376. doi: 10.1016/S0892-6875(00)00119-9

    [34]

    ABHYARTHANA P, VENUGOPAL R. Investigation of adsorption mechanism of reagents (surfactants) system and its applicability in iron ore flotation - an overview. Colloid and Interface Science Communications, 2018, 25: 41-65. doi: 10.1016/j.colcom.2018.06.003

    [35]

    LOPES G M, LIMA R. Flotao direta de minério de ferro com oleato de sódio[J]. Rem Revista Escola de Minas, 2009, 62(3): 323-329. doi: 10.1590/S0370-44672009000300010

    [36]

    XW A, WLA B, HAO D A, et al. Potential application of an eco-friendly amine oxide collector in flotation separation of quartz from hematite[J]. Separation and Purification Technology, 2021, 278: 119668. doi: 10.1016/j.seppur.2021.119668

    [37]

    VIDYADHAR A, KUMARI N, BHAGAT R P. Adsorption mechanism of mixed cationic/Anionic collectors in quartz-hematite flotation system[J]. Mineral Processing & Extractive Metallurgy Review, 2014, 35(2): 117-125.

    [38]

    SAHOO H, RATH S S, RAO D S, et al. Role of silica and alumina content in the flotation of iron ores[J]. International Journal of Mineral Processing, 2016, 148: 83-91. doi: 10.1016/j.minpro.2016.01.021

    [39]

    CRUNDWELL F K. On the mechanism of the flotation of oxides and silicates[J]. Minerals Engineering, 2016, 95: 185-196. doi: 10.1016/j.mineng.2016.06.017

    [40]

    ZHANG P, YU Y, BOGAN M. Challenging the "Crago" double float process Ⅱ. Amine-fatty acid flotation of siliceous phosphates[J]. Minerals Engineering, 1997, 10(9): 983-994. doi: 10.1016/S0892-6875(97)00078-2

    [41]

    李显嵩. 湖南某低品位萤石矿浮选试验研究[J]. 非金属矿, 2011, 34(6): 36-38+41. https://www.cnki.com.cn/Article/CJFDTOTAL-FJSK201106010.htm

    [42]

    MARTIŃEZ A L, URIBE A S. Interfacial properties of celestite and strontianite in aqueous solutions[J]. Minerals Engineering, 1995, 8(9): 1 009-1 022. doi: 10.1016/0892-6875(95)00064-W

    [43]

    李志勇. RA-915捕收剂在李楼铁矿选矿厂的应用[J]. 金属矿山, 2009, 11: 209-211. https://cpfd.cnki.com.cn/Article/CPFDTOTAL-YJKS200911001044.htm

    [44]

    林祥辉, 路平, 陈让怀, 等. 高效新品种捕收剂RA—315的制取及应用研究[J]. 矿冶工程, 1993(3): 31-35. https://www.cnki.com.cn/Article/CJFDTOTAL-KYGC199303006.htm

    [45]

    LI Y J, LUO B B, ZHU Y M, et al. Flotation and adsorption of a new collector alpha-Bromodecanoic acid on quartz surface[J]. Minerals Engineering, 2015, 77: 86-92. doi: 10.1016/j.mineng.2015.03.003

    [46]

    郭玉, 寇珏, 孙体昌, 等. 十二烷基磺酸钠和月桂酸在石英表面的吸附机理研究[J]. 矿冶工程, 2015, 35(2): 50-54. doi: 10.3969/j.issn.0253-6099.2015.02.012

    [47]

    宋其圣, 郭新利, 苑世领, 等. 十二烷基苯磺酸钠在SiO2表面聚集的分子动力学模拟[J]. 物理化学学报, 2009, 25(6): 1 053-1 058. https://www.cnki.com.cn/Article/CJFDTOTAL-WLHX200906005.htm

    [48]

    郭文达, 朱一民, 王鹏, 等. 新型酰胺基羧酸捕收剂DWD-1用于铁矿反浮选试验研究[J]. 矿产保护与利用, 2016(3): 22-25+39. http://kcbh.cbpt.cnki.net/WKD/WebPublication/paperDigest.aspx?paperID=0f0ac999-3237-46c4-acd7-2fd6a41f3b8d

    [49]

    GUO W D, ZHU Y M, HAN Y X, et al. Flotation performance and adsorption mechanism of a new collector 2-(carbamoylamino) lauric acid on quartz surface[J]. Minerals Engineering, 2020, 153: 106343. doi: 10.1016/j.mineng.2020.106343

    [50]

    刘文刚. 新型赤铁矿反浮选脱硅捕收剂的合成及浮选性能研究[D]. 沈阳: 东北大学, 2010.

    [51]

    HUANG Z, ZHONG H, WANG S, et al. Investigations on reverse cationic flotation of iron ore by using a Gemini surfactant: Ethane-1, 2-bis(dimethyl-dodecyl-ammonium bromide)[J]. Chemical Engineering Journal, 2014, 257: 218-228. doi: 10.1016/j.cej.2014.07.057

    [52]

    FUERSTENAU D W, JIA R. The adsorption of alkylpyridinium chlorides and their effect on the interfacial behavior of quartz[J]. Colloids & Surfaces A Physicochemical & Engineering Aspects, 2004, 250(1/2/3): 223-231.

    [53]

    ARAUJO A C, VIANA P, PERES A. Reagents in iron ores flotation[J]. Minerals Engineering, 2005, 18(2): 219-224. doi: 10.1016/j.mineng.2004.08.023

    [54]

    陈达, 葛英勇, 余永富. 磁选铁精矿再提纯反浮选工艺和药剂的研究[J]. 矿产保护与利用, 2005, 4: 46-50. doi: 10.3969/j.issn.1001-0076.2005.04.013

    [55]

    CHENG Z, ZHU Y, LI Y, et al. Flotation and adsorption of quartz with the new collector butane-3-heptyloxy-1, 2-diamine[J]. Mineralogy and Petrology, 2019, 113(2): 207-216. doi: 10.1007/s00710-018-0639-y

    [56]

    葛英勇. 新型捕收剂烷基多胺醚(GE-609)的合成及浮选性能研究[D]. 武汉: 武汉理工大学, 2010.

    [57]

    ABAKAWOOD G B, ADDAIMENSAH J, SKINNER W. A study of flotation characteristics of monazite, hematite, and quartz using anionic collectors[J]. International Journal of Mineral Processing, 2016, 158: 55-62.

    [58]

    VIDYADHAR A, RAO K H. Adsorption mechanism of mixed cationic/anionic collectors in feldspar-quartz flotation system[J]. Journal of Colloid and Interface Science, 2007, 306(2): 195-204. doi: 10.1016/j.jcis.2006.10.047

    [59]

    SWAGAT S R, HRUSHIKESH S, BISWESWAR D, et al. Density functional calculations of amines on the (101) face of quartz[J]. Minerals Engineering, 2014, 69: 57-64. doi: 10.1016/j.mineng.2014.07.007

    [60]

    Chen P, Hu Y, Gao Z, et al. Discovery of a novel cationic surfactant: tributyltetradecyl-phosphonium chloride for iron ore flotation: from prediction to experimental verification[J]. Minerals, 2017, 7(12): 240. doi: 10.3390/min7120240

    [61]

    JYOTI D, RATH R K, SUNATI, et al. Beneficiation of a finely disseminated low-grade iron ore by froth flotation[C]. International Seminar on Mineral Processing Technology. Allied Publishers, New Delhi, 2010.

    [62]

    DEVíNSKY F, LACKO I, BITTEREROVA F, et al. Relationship between structure, surface activity, and micelle formation of some new bisquaternary isosteres of 1, 5-pentanediammonium dibromides[J]. Journal of Colloid & Interface Science, 1986, 114(2): 314-322.

    [63]

    ANSARI W H, FATMA N, PANDA M, et al. Solubilization of polycyclic aromatic hydrocarbons by novel biodegradable cationic gemini surfactant ethane-1, 2-diyl bis(N, N-dimethyl-N-hexadecylammoniumacetoxy) dichloride and its binary mixtures with conventional surfactants[J]. Soft Matter, 2013, 9(5): 1 478-1 487. doi: 10.1039/c2sm26926k

    [64]

    HUANG Z, ZHONG H, WANG S, et al. Investigations on reverse cationic flotation of iron ore by using a Gemini surfactant: Ethane-1, 2-bis(dimethyl-dodecyl-ammonium bromide)[J]. Chemical Engineering Journal, 2014, 257: 218-228. doi: 10.1016/j.cej.2014.07.057

    [65]

    WENG X Q, MEI G J, ZHAO T T, et al. Utilization of novel ester-containing quaternary ammonium surfactant as cationic collector for iron ore flotation[J]. Separation & Purification Technology, 2013, 103: 187-194.

    [66]

    ZANA R. Alkanediyl-α, ω-bis(dimethylalkylammonium bromide) Surfactants: Ⅱ. Krafft Temperature and Melting Temperature[J]. Colloid Interface, 2002, 252(1): 259-261. doi: 10.1006/jcis.2002.8457

    [67]

    孙丽君, 吕宪俊, 杜飞飞, 等. 阳离子浮选泡沫及消泡技术研究[J]. 现代矿业, 2009, 25(6): 36-38. doi: 10.3969/j.issn.1674-6082.2009.06.012

    [68]

    纪斌, 孙伟, 王若林. 十二胺反浮选胶磷矿的消泡机理研究[J]. 矿冶工程, 2018, 38(2): 47-50. doi: 10.3969/j.issn.0253-6099.2018.02.011

    [69]

    RAO D S, VIJAYAKUMAR T V, RAO S S, et al. Effectiveness of sodium silicate as gangue depressants in iron ore slimes flotation[J]. 2011, 18(5): 515-522.

    [70]

    WANG L, SUN W, HU Y H, et al. Adsorption mechanism of mixed anionic/cationic collectors in Muscovite - Quartz flotation system[J]. Minerals Engineering, 2014, 64: 44-50. doi: 10.1016/j.mineng.2014.03.021

    [71]

    LIMA N P, VALADAO G, PERES A. Effect of amine and starch dosages on the reverse cationic flotation of an iron ore[J]. Minerals Engineering, 2013, 45(45): 180-184.

    [72]

    RAO K H, ANTTI B M, FORSSBERG K. Flotation of mica minerals and selectivity between muscovite and biotite while using mixed anionic/cationic collectors[J]. Minerals & Metallurgical Processing, 2016, 7(3): 127-132.

    [73]

    WANG Y, REN J. The flotation of quartz from iron minerals with a combined quaternary ammonium salt[J]. International Journal of Mineral Processing, 2005, 77(2): 116-122. doi: 10.1016/j.minpro.2005.03.001

    [74]

    VIDYADHAR A, KUMARI N, BHAGAT R P. Flotation of quartz and hematite: adsorption mechanism of mixed cationic/anionic collector systems[J]. Minerals Processing, 2012, 23: 10-11.

    [75]

    WANG Y, REN J. The flotation of quartz from iron minerals with a combined quaternary ammonium salt[J]. International Journal of Mineral Processing, 2005, 77(2): 116-122. doi: 10.1016/j.minpro.2005.03.001

    [76]

    FILHO L S L, RODRIGUES G A. The use of ethoxylated nonionic surfactants on the cationic flotation of quartz[C]. Proceedings of the Ⅲ Meeting Southern Hemisphere on Mineral Technology, São Lourenço, Brazil, 1992: 50-64.

    [77]

    郭文达, 朱一民, 韩跃新, 等. 钙离子对脂肪酸类捕收剂浮选石英的影响机理[J]. 东北大学学报(自然科学版), 2018, 39(3): 409-415. https://www.cnki.com.cn/Article/CJFDTOTAL-DBDX201803021.htm

    [78]

    COOKE S. The flotation of quartz using calcium ion activator[J]. The American Institute of Mining, Metallurgical, and Petroleum Engineers, 1949, 184: 306-309

    [79]

    Yang H, Tang Q, Wang C, et al. Flocculation and flotation response of Rhodococcus erythropolis to pure minerals in hematite ores[J]. Minerals Engineering, 2013, 45: 67-72. doi: 10.1016/j.mineng.2013.01.005

    [80]

    罗溪梅, 马鸣泽, 孙传尧, 等. 铁矿石浮选体系中矿物交互影响的作用形式[J]. 中国矿业大学学报, 2018, 47(3): 645-651. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGKD201803019.htm

    [81]

    SCHUHMANN R J, PRAKASH B. Effect of BaCl2 and other activators on soap flotation of quartz[J]. The American Institute of Mining, Metallurgical, and Petroleum Engineers, 1950, 187: 591-600.

    [82]

    ZHANG J, WANG W, LIU J, et al. Fe(Ⅲ) as an activator for the flotation of spodumene, albite, and quartz minerals[J]. Minerals Engineering, 2014, 61: 16-22. doi: 10.1016/j.mineng.2014.03.004

    [83]

    FORNASIERO D, RALSTON J. Cu(Ⅱ) and Ni(Ⅱ) activation in the flotation of quartz, lizardite and chlorite[J]. International Journal of Mineral Processing, 2005, 76(1/2): 75-81.

    [84]

    EJTEMAEIA M, IRANNAJADA M, GHARABAGHI M. Role of dissolved mineral species in selective flotation of smithsonite from quartz using oleate as collector[J]. International Journal of Mineral Processing, 2012, 114(8): 40-47.

    [85]

    XINGHUA L, YONGFU Y, WEN C, et al. Effect of Selective Flocculation Desliming on Flotation of Fine Grained Yuanjiacun Iron Ore[C]. International mineral processing congress, New Delhi, India, 2012: 633.

    [86]

    XIA L, HONG Z, LIU G, et al. Flotation separation of the aluminosilicates from diaspore by a Gemini cationic collector[J]. International Journal of Mineral Processing, 2009, 92(1/2): 74-83.

    [87]

    VIDYADHAR A, RAO K H. Adsorption mechanism of mixed cationic/anionic collectors in feldspar-quartz flotation system[J]. Journal of Colloid and Interface Science, 2007, 306(2): 195-204. doi: 10.1016/j.jcis.2006.10.047

    [88]

    PERES A, CORREA M I. Depression of iron oxides with corn starches[J]. Minerals Engineering, 1996, 9(12): 1 227-1 234. doi: 10.1016/S0892-6875(96)00118-5

    [89]

    STERLING C. Textural qualities and molecular structure of starch products[J]. Texture Studies, 2007, 9(3): 225-255.

    [90]

    NAKHAEI F, IRANNAJAD M. Reagents types in flotation of iron oxide minerals: A review[J]. Mineral Processing & Extractive Metallurgy Review, 2018, 39(2): 89-124.

    [91]

    PAVLOVIC S, BRANDAO P. Adsorption of starch, amylose, amylopectin and glucose monomer and their effect on the flotation of hematite and quartz[J]. Minerals Engineering, 2003, 16(11): 1 117-1 122. doi: 10.1016/j.mineng.2003.06.011

    [92]

    RATH R K, SUBRAMANIAN S, PRADEEP T. Surface Chemical Studies on Pyrite in the Presence of Polysaccharide-Based Flotation Depressants[J]. Journal of Colloid and Interface Science, 2000, 229(1): 82-91. doi: 10.1006/jcis.2000.6990

    [93]

    QI L, ZHANG Y, LASKOWSKI J S. The adsorption of polysaccharides onto mineral surfaces: An acid/base interaction[J]. International Journal of Mineral Processing, 2000, 60(3): 229-245.

    [94]

    SHRIMALI K, MILLER J D. Polysaccharides depressants for the reverse flotation of iron ore[J]. Transactions of the Indian Institute of Metals, 2016, 69(1): 83-95. doi: 10.1007/s12666-015-0708-4

    [95]

    SHRIMALI K, ATLURI V, YAN W, et al. The nature of hematite depression with corn starch in the reverse flotation of iron ore[J]. Journal of Colloid & Interface Science, 2018, 524: 337.

    [96]

    ARAUJO A C, VIANA P, PERES A. Reagents in iron ores flotation[J]. Minerals Engineering, 2005, 18(2): 219-224. doi: 10.1016/j.mineng.2004.08.023

    [97]

    RAJU G B, HOLMGREN A, FORSLING W. Adsorption of Dextrin at Mineral/Water Interface[J]. Journal of Colloid & Interface Science, 1997, 193(2): 215-222.

    [98]

    TURRER H, PERES A. Investigation on alternative depressants for iron ore flotation[J]. Minerals Engineering, 2010, 23(11/13): 1 066-1 069.

    [99]

    POPERECHNIKOVA O Y, FILIPPOV L O, SHUMSKAYA E N, et al. Intensification of the reverse cationic flotation of hematite ores with optimization of process and hydrodynamic parameters of flotation cell[J]. Journal of Physics Conference Series, 2017, 879: 012016. doi: 10.1088/1742-6596/879/1/012016

    [100]

    SANTOS I, OLIVEIRA J F. Utilization of humic acid as a depressant for hematite in the reverse flotation of iron ore[J]. Minerals Engineering, 2007, 20(10): 1 003-1 007. doi: 10.1016/j.mineng.2007.03.007

    [101]

    ENGWAYU J, PAWLIK M. Adsorption of anionic polymers on hematite - a study of zeta potential distributions[J]. Minerals Engineering, 2020, 148: 106225. doi: 10.1016/j.mineng.2020.106225

    [102]

    TOHRY A, DEHGHAN R. Tannin: An eco-friendly depressant for the green flotation separation of hematite from quartz[J]. Minerals Engineering, 2021, 168: 106917. doi: 10.1016/j.mineng.2021.106917

  • 加载中

(2)

(1)

计量
  • 文章访问数:  3044
  • PDF下载数:  50
  • 施引文献:  0
出版历程
收稿日期:  2021-09-09
刊出日期:  2021-10-25

目录