硫化铅锌矿石浮选分离技术研究进展

王潇, 文书明, 韩广, 廖润鹏, 孟胜冰, 丰奇成. 硫化铅锌矿石浮选分离技术研究进展[J]. 矿产保护与利用, 2021, 41(5): 168-178. doi: 10.13779/j.cnki.issn1001-0076.2021.05.023
引用本文: 王潇, 文书明, 韩广, 廖润鹏, 孟胜冰, 丰奇成. 硫化铅锌矿石浮选分离技术研究进展[J]. 矿产保护与利用, 2021, 41(5): 168-178. doi: 10.13779/j.cnki.issn1001-0076.2021.05.023
WANG Xiao, WEN Shuming, HAN Guang, LIAO Runpeng, MENG Shengbing, FENG Qicheng. The Research Development on the Flotation Technology and Reagents of Lead-zinc Sulfide Ore[J]. Conservation and Utilization of Mineral Resources, 2021, 41(5): 168-178. doi: 10.13779/j.cnki.issn1001-0076.2021.05.023
Citation: WANG Xiao, WEN Shuming, HAN Guang, LIAO Runpeng, MENG Shengbing, FENG Qicheng. The Research Development on the Flotation Technology and Reagents of Lead-zinc Sulfide Ore[J]. Conservation and Utilization of Mineral Resources, 2021, 41(5): 168-178. doi: 10.13779/j.cnki.issn1001-0076.2021.05.023

硫化铅锌矿石浮选分离技术研究进展

  • 基金项目:
    云南省"万人计划"青年拔尖人才专项(YNWR-QNBJ-2018-051);中国博士后科学基金面上资助项目(2017M613007)
详细信息
    作者简介: 王潇(1998-),男,硕士研究生,主要研究方向为浮选理论与工艺、资源综合利用;E-mail:Wx980225@163.com
    通讯作者: 丰奇成(1987-),男,教授,博士,主要研究方向为浮选理论与技术、矿产资源综合利用;E-mail:fqckmust@126.com
  • 中图分类号: TD952.2;TD952.3

The Research Development on the Flotation Technology and Reagents of Lead-zinc Sulfide Ore

More Information
  • 铅和锌是工业生产中必不可少的金属原料,随着工业的快速发展,易选别的硫化铅锌矿石难以满足铅锌资源的需求。硫化铅锌矿的分离一直都是矿物加工工程领域的研究热点。但是由于铅锌矿中各目的矿物紧密伴生,各种离子对目的矿物作用复杂等多种原因导致其高效分离和综合利用困难。本文在前人研究的基础上,归纳和分析了硫化铅锌矿难以分离的主要因素,并详细阐述了硫化铅锌矿浮选分离工艺和药剂,讨论了对硫化铅锌矿分离研究的方向,以期对硫化铅锌矿高效浮选提供参考。

  • 加载中
  • 图 1  黄药(a)、黑药(b)、烃基二硫代磷酸硫醚酯(c)、黄原酸酯(d)和二烷基二硫代氨基甲酸酯(盐)(e)结构式

    Figure 1. 

    图 2  三甲基乙酰硫代苯甲酰胺(TTBA)结构式

    Figure 2. 

    图 3  2-羟乙基二丁基二硫代氨基甲酸酯(HEBTC)结构式

    Figure 3. 

    图 4  3-(乙氨基)-N-苯基-3-硫代丙酰胺(EAPhTXPA)结构式

    Figure 4. 

    图 5  5-戊基-1, 2, 4-三唑-3-硫酮(ATT)结构式

    Figure 5. 

    图 6  二甲基二硫代氨基甲酸钠结构式

    Figure 6. 

    图 7  壳聚糖结构图

    Figure 7. 

    图 8  果胶结构图

    Figure 8. 

    表 1  部分铅锌矿最佳磨矿细度下的浮选指标

    Table 1.  Flotation index of some lead-zinc ores with optimum grinding fineness

    不同矿床的矿石 -0.074 mm含量/% 原矿品位/% 最佳磨矿细度下的浮选指标/%
    Zn Pb Zn品位 Zn回收率 Pb品位 Pb回收率
    栖霞山深部银铅锌矿[31] 70 6.33 4.16 11.00 20.00 32.00 90.00
    新疆某铅锌矿[32] 75 2.14 3.86 16.00 41.00 22.00 94.00
    云南某低品位铅锌萤石矿[33] 81 1.08 2.56 2.11 8.19 52.13 86.24
    广西某难选铅锌矿[34] 80 9.19 0.88 21.60 63.06 26.50 80.88
    甘肃某铅锌矿[35] 65 3.14 0.90 2.10 15.00 17.80 85.00
    四川某硫化铅锌矿[36] 75 2.14 1.18 4.95 16.10 14.34 77.12
    内蒙古某多金属硫化矿[37] 80 3.43 2.17 6.26 18.03 19.78 94.18
    云南迪庆铜铅锌硫化矿[38] 80 2.35 1.33 3.10 28.00 3.60 84.00
    下载: 导出CSV

    表 2  硫化铅锌矿石常用的浮选工艺流程及其特点[43-44]

    Table 2.  Common flotation process flow and characteristics of lead-zinc sulfide ore

    浮选工艺 特点
    优先浮选 适用于原矿品位较高的原生硫化矿;对矿石品位变化的适应性强,具有较高的灵活性,可以获得高质量的精矿产品,是硫化铅锌矿浮选的常用工艺
    混合浮选 适用于处理硫化矿总含量不高,矿物之间共生关系密切,结构复杂,嵌布粒度细的矿石;有利于降低能耗和药耗,但精矿脱药问题未能很好解决
    等可浮浮选 适用于含有不同可浮性的闪锌矿的铅锌矿石;易浮的闪锌矿与方铅矿一起浮出,混合精矿再进行铅锌分离,充分利用了矿物之间的可浮性差异,节省药剂用量,避免了优先浮选的强行抑制和活化
    电位调控浮选 适用于细粒嵌布的铅锌矿石,矿浆电位可以影响硫化矿物的疏水性和浮选行为,由于浮选过程中硫化矿物表面发生化学变化,矿物表面的疏水和亲水过程有电化学反应参与,对矿浆电位进行调控,可改善浮选指标。该工艺流程简单,药剂消耗量少,但矿浆电位难以控制
    分速分支浮选 适用于原矿品位较低的矿石浮选,当原矿品位较低时,该流程将浮选矿浆分为两支,其中一支矿浆浮选富集物作为入料,给入另一支矿浆进行浮选,从而改善选矿指标
    异步浮选 适用于混合精矿的浮选,控制矿浆的性质,使方铅矿和闪锌矿不同步地在各自合适的条件下充分根据其自身特性上浮,该工艺可提高伴生在硫化铅锌矿中贵金属的回收率,减少铅锌互含损失
    下载: 导出CSV

    表 3  不同选矿厂铅粗选中所用的捕收剂及抑制剂

    Table 3.  Collector and depressor types in rough separation of lead flotation in different plants

    不同矿床的矿石 原矿品位/% 捕收剂 抑制剂 铅粗选精矿品位/% 铅粗选精矿回收率/%
    Pb Zn Pb Zn Pb Zn
    云南某低品位铅锌矿[24] 1.70 7.36 乙硫氮 硫酸锌+碳酸钠+亚硫酸钠 12.23 8.21 80.19 11.87
    新疆某铅锌矿[32] 3.86 2.14 丁基黄药 硫酸锌 22.53 2.32 91.53 16.60
    白牛厂铅锌硫化矿[28] 2.46 3.85 丁基黄药+乙硫氮 / 12.14 4.20 92.01 20.00
    云南某低品位铅锌萤石矿[33] 2.56 1.08 丁基黄药 硫酸锌 52.13 2.11 86.24 8.19
    甘肃某铅锌矿[35] 0.90 3.14 SN-9+BK338 硫酸锌 17.80 2.10 85.00 15.00
    四川某硫化铅锌矿[36] 1.18 2.14 25号黑药 硫酸锌 12.00 5.50 81.00 20.10
    内蒙古某多金属硫化矿[37] 2.17 3.43 异丙基黄药+25号黑药 硫酸锌 19.78 6.26 94.18 18.03
    缅甸某硫化铅锌矿[91] 9.87 2.79 乙硫氮 硫酸锌+QY 58.00 4.50 91.00 22.00
    大厂105号矿[92] 1.80 13.69 / 亚硫酸钠+硫酸锌+腐殖酸钠 15.10 4.96 63.69 2.71
    七宝山铅锌矿[93] 1.40 2.52 苯胺黑药+乙硫氮 硫化钠 10.01 5.30 79.90 21.50
    下载: 导出CSV
  • [1]

    唐攀科, 王春艳, 梅友松, 等. 中国铅锌矿产资源成矿特征与资源潜力评价[J]. 地学前缘, 2018, 25(3): 31-49. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201803004.htm

    [2]

    《中国矿产资源报告(2020)》发布[J]. 地质装备, 2020, 21(6): 3-5.

    [3]

    FENG Q, WEN S, WANG Y, et al. Investigation of leaching kinetics of cerussite in sodium hydroxide solutions[J]. Physicochemical Problems of Mineral Processing, 2015, 51(2): 491-500.

    [4]

    NWOYE CI. Model for predicting the initial solution ph at pre-assumed final ph and concentration of dissolved lead during leaching of galena in butanoic acid solution[J]. Journal of Engineering Science and Technology, 2010, 5(2): 176.

    [5]

    XIE H, LIU Y, RAO B, et al. Selective Passivation Behavior of Galena Surface by Sulfuric Acid and a Novel Flotation Separation Method for Copper-lead Sulfide Ore without Collector and Inhibitor[J]. Separation and Purification Technology, 2021, 267(1/2): 118621.

    [6]

    LIANG ZA, WLA B, WL A, et al. Investigation on matching relationship between surface characters and collector properties: Achieving flotation separation of zinc oxide minerals from quartz[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 617.

    [7]

    达娃卓玛, 刘潘, 李国栋, 等. 西藏某混合铅锌矿优先浮选试验研究[J]. 矿产综合利用, 2021(3): 82-87. https://www.cnki.com.cn/Article/CJFDTOTAL-KCZL202103013.htm

    [8]

    MIKHLIN Y, KUKLINSKIY A, MIKHLINA E, et al. Electrochemical behaviour of galena (PbS) in aqueous nitric acid and perchloric acid solutions[J]. Journal of Applied Electrochemistry, 2004, 34(1): 37-46. doi: 10.1023/B:JACH.0000005566.28289.c0

    [9]

    尚衍波, 陈经华, 何发钰. 中国铅锌选矿技术新进展[J]. 世界有色金属, 2016(6): 11-18. https://www.cnki.com.cn/Article/CJFDTOTAL-COLO201606001.htm

    [10]

    程武忠. 铅锌硫化矿选矿工艺及机理浅析[J]. 世界有色金属, 2019(21): 52-53. doi: 10.3969/j.issn.1002-5065.2019.21.032

    [11]

    黄凌云. 闪锌矿晶体结构性质及其铜活化作用[J]. 矿产保护与利用, 2018(3): 26-30. http://kcbh.cbpt.cnki.net/WKD/WebPublication/paperDigest.aspx?paperID=7fd9fcd6-7bf4-43af-9853-efd24466c21d

    [12]

    孙若凡, 刘丹, 杜钰, 等. 黄铜矿、方铅矿分离研究现状及进展[J]. 矿产综合利用, 2021(4): 80-86+35. https://www.cnki.com.cn/Article/CJFDTOTAL-KCZL202104012.htm

    [13]

    苏超, 刘殿文, 申培伦, 等. 黄铜矿和方铅矿的电化学特性及浮选行为研究进展[J]. 有色金属工程, 2020, 10(9): 79-87. https://www.cnki.com.cn/Article/CJFDTOTAL-YOUS202009013.htm

    [14]

    CHEN JH, CHEN Y. LONG XH, et al. DFT study of coadsorption of water and oxygen on galena (PbS) surface: An insight into the oxidation mechanism of galena[J]. Applied Surface Science, 2017, 420(oct. 31): 714-719.

    [15]

    陈建华, 曾小钦, 陈晔, 等. 含空位和杂质缺陷的闪锌矿电子结构的第一性原理计算[J]. 中国有色金属学报, 2010, 20(4): 765-771. https://www.cnki.com.cn/Article/CJFDTOTAL-ZYXZ201004028.htm

    [16]

    刘建. 闪锌矿表面原子构型及铜吸附活化浮选理论研究[D]. 昆明: 昆明理工大学, 2013.

    [17]

    F·拉什齐, 汪镜亮, 李长根. 闪锌矿的活化及表面Pb离子浓度[J]. 国外金属矿选矿, 2003(6): 31-36+45. https://www.cnki.com.cn/Article/CJFDTOTAL-JSXK200306005.htm

    [18]

    夏玉林. 类质同像置换对闪锌矿和黄铁矿表面反应性的制约[D]. 广州: 中国科学院大学(中国科学院广州地球化学研究所), 2019.

    [19]

    李丹, 郜伟, 胡志强. 广西某复杂铅锌矿石工艺矿物学研究[J]. 现代矿业, 2020, 36(8): 163-165. https://www.cnki.com.cn/Article/CJFDTOTAL-KYKB202008055.htm

    [20]

    梁溢强, 毛明发, 宋涛, 等. 新型抑制剂在某铅锌硫混合精矿浮选分离中的应用[J]. 矿产保护与利用, 2020, 40(5): 109-115. http://kcbh.cbpt.cnki.net/WKD/WebPublication/paperDigest.aspx?paperID=b876d3be-65da-49ef-a852-ad78de31e50f

    [21]

    JIA Y, HUANG XP, HUANG K, et al. Synthesis, flotation performance and adsorption mechanism of 3-(ethylamino)-N-phenyl-3-thioxopropanamide onto galena/sphalerite surfaces[J]. Journal of Industrial and Engineering Chemistry, 2019, 77(C): 416-425.

    [22]

    程德明. 中国硫化铅锌矿选矿技术的现状与前景[J]. 广东有色金属学报, 1994(1): 6-12. https://www.cnki.com.cn/Article/CJFDTOTAL-GDYS401.001.htm

    [23]

    王伊杰, 张谦, 聂文林. 西藏铜铅锌矿矿石工艺矿物学研究[J]. 矿冶, 2019, 28(6): 92-98. https://www.cnki.com.cn/Article/CJFDTOTAL-KYZZ201906020.htm

    [24]

    薛晨, 魏志聪. 云南某低品位铅锌矿铅锌分离试验研究[J]. 矿冶, 2017, 26(3): 13-18. https://www.cnki.com.cn/Article/CJFDTOTAL-KYZZ201703004.htm

    [25]

    赵晖, 张汉平. 某高氧化率铅锌矿的选矿试验研究[J]. 矿业研究与开发, 2011, 31(3): 45-47+93. https://www.cnki.com.cn/Article/CJFDTOTAL-KYYK201103014.htm

    [26]

    冯晓燕, 姜涛, 赵志强, 等. 某铜铅锌多金属硫化矿选矿试验研究[J]. 矿冶工程, 2020, 40(5): 53-57. https://www.cnki.com.cn/Article/CJFDTOTAL-KYGC202005016.htm

    [27]

    马岩, 王红娟. 中国硫化铅锌矿选矿技术的现状与前景[J]. 中国金属通报, 2018(4): 19-20. https://www.cnki.com.cn/Article/CJFDTOTAL-JSTB201804006.htm

    [28]

    磨学诗, 黄伟中, 张雁生, 等. 提高多金属硫化铅锌矿浮选指标的研究[J]. 有色金属(选矿部分), 2007(1): 9-12. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXK200701002.htm

    [29]

    敖顺福. 碳酸盐岩型(MVT)铅锌矿选矿技术进展[J]. 矿产保护与利用, 2020, 40(5): 170-178. http://kcbh.cbpt.cnki.net/WKD/WebPublication/paperDigest.aspx?paperID=8ee23168-2551-4278-b5d9-4d662fc81dc8

    [30]

    赵树玉. 某硫化铅锌矿选矿试验研究[J]. 云南冶金, 2020, 49(4): 31-34. https://www.cnki.com.cn/Article/CJFDTOTAL-YNYJ202004007.htm

    [31]

    赵志强, 缪建成, 贺政, 等. 提高栖霞山深部银铅锌矿石选别指标新工艺研究及应用[J]. 有色金属(选矿部分), 2019(5): 63-70+80. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXK201905012.htm

    [32]

    李飞, 周涛, 李健民, 等. 新疆某铅锌矿选矿工艺试验研究[J]. 世界有色金属, 2019(18): 69-71. https://www.cnki.com.cn/Article/CJFDTOTAL-COLO201918042.htm

    [33]

    徐朝刚, 李光英, 陈红兵. 云南某低品位铅锌萤石矿选矿试验研究[J]. 矿冶工程, 2019, 39(6): 66-69. https://www.cnki.com.cn/Article/CJFDTOTAL-KYGC201906019.htm

    [34]

    吴迪, 彭会清, 邵辉, 等. 广西某难选铅锌矿铅锌分离试验[J]. 金属矿山, 2014(7): 84-88. https://www.cnki.com.cn/Article/CJFDTOTAL-JSKS201407018.htm

    [35]

    焦跃旭, 肖婉琴, 陈康康. 甘肃某铅锌矿顺序优先浮选试验研究[J]. 矿冶, 2020, 29(6): 40-44. https://www.cnki.com.cn/Article/CJFDTOTAL-KYZZ202006008.htm

    [36]

    史巾, 卜显忠, 翁存建, 等. 四川某硫化铅锌矿选矿工艺试验研究[J]. 矿业研究与开发, 2021, 41(1): 141-145. https://www.cnki.com.cn/Article/CJFDTOTAL-KYYK202101026.htm

    [37]

    简胜, 孙伟, 胡岳华. 内蒙古某复杂多金属硫化矿选矿技术研究[J]. 矿冶工程, 2019, 39(4): 50-53+62. https://www.cnki.com.cn/Article/CJFDTOTAL-KYGC201904014.htm

    [38]

    肖炜, 田小松. 云南迪庆铜铅锌硫化矿浮选分离研究[J]. 矿产综合利用, 2020(1): 65-70. https://www.cnki.com.cn/Article/CJFDTOTAL-KCZL202001014.htm

    [39]

    夏青, 欧阳辉, 梁菁菁. 硫化铅锌矿浮选分离研究进展[J]. 矿冶, 2018, 27(02): 9-14. https://www.cnki.com.cn/Article/CJFDTOTAL-KYZZ201802003.htm

    [40]

    王红娟, 马岩. 硫化铅锌矿浮选分离技术的研究现状及进展[J]. 中国金属通报, 2018(4): 142+144. https://www.cnki.com.cn/Article/CJFDTOTAL-JSTB201804077.htm

    [41]

    赵福刚. 我国铅锌矿选矿技术现状[J]. 有色矿冶, 2007(6): 20-25. https://www.cnki.com.cn/Article/CJFDTOTAL-YSKY200706006.htm

    [42]

    陈军, 卫亚儒, 胡聪, 于伟. 氧化铅锌矿选矿现状及最新进展[J]. 中国矿山工程, 2015, 44(2): 19-23. https://www.cnki.com.cn/Article/CJFDTOTAL-YSKS201502007.htm

    [43]

    邹光旭, 吴雪兰, 郭争争, 等. 铅锌矿铅锌浮选的研究进展[J]. 安徽化工, 2017, 43(3): 13-18. https://www.cnki.com.cn/Article/CJFDTOTAL-AHHG201703004.htm

    [44]

    何元卿, 余文, 等. 硫化铅锌矿浮选分离技术的研究现状及进展[J]. 金属矿山, 2016(3): 1-9. https://www.cnki.com.cn/Article/CJFDTOTAL-JSKS201603002.htm

    [45]

    文涵睿, 李利娟. 四川某混合铅锌矿优先浮选试验研究[J]. 矿业研究与开发, 2021, 41(6): 121-126. https://www.cnki.com.cn/Article/CJFDTOTAL-KYYK202106022.htm

    [46]

    梁李晓, 陈建华, 温凯. 云南某硫化铅锌矿低碱条件下浮选分离试验[J]. 金属矿山, 2020(12): 119-124. https://www.cnki.com.cn/Article/CJFDTOTAL-JSKS202012020.htm

    [47]

    陈京玉, 康维刚, 谢建平, 等. 内蒙古某深部高硫铅锌矿石浮选工艺试验研究[J]. 金属矿山, 2018(10): 80-85. https://www.cnki.com.cn/Article/CJFDTOTAL-JSKS201810016.htm

    [48]

    刘豹, 郝良影, 李强, 等. 辽宁某铜铅锌硫化矿石电位调控优先浮选试验[J]. 金属矿山, 2016(3): 82-85. https://www.cnki.com.cn/Article/CJFDTOTAL-JSKS201603018.htm

    [49]

    陈树锦. 硫化铅锌矿分速分支浮选新技术工艺试验研究与应用[J]. 湖南有色金属, 2014, 30(3): 15-20. https://www.cnki.com.cn/Article/CJFDTOTAL-HNYJ201403005.htm

    [50]

    李俊旺, 孙传尧, 袁闯. 会泽铅锌硫化矿异步浮选新技术研究[J]. 金属矿山, 2011(11): 83-91. https://www.cnki.com.cn/Article/CJFDTOTAL-JSKS201111021.htm

    [51]

    LIU S, LIU GY, HUANG YG, et al. Hydrophobic intensification flotation: Comparison of collector containing two minerophilic groups with conventional collectors[J]. Transactions of Nonferrous Metals Society of China, 2020, 30(9): 2536-2546.

    [52]

    MIKHLIN YL, KARACHAROV AA, LIKHATSKI MN. Effect of adsorption of butyl xanthate on galena, PbS, and HOPG surfaces as studied by atomic force microscopy and spectroscopy and XPS[J]. International Journal of Mineral Processing, 2015, 144: 81-89.

    [53]

    LAI H, DENG J, LIU Q, et al. Surface chemistry investigation of froth flotation products of lead-zinc sulfide ore using ToF-SIMS and multivariate analysis[J]. Separation and Purification Technology, 2020, 254: 117655.

    [54]

    JIA Y, ZHANG Y, HUANG Y, et al. Synthesis of trimethylacetylthiobenzamide and its flotation separation performance of galena from sphalerite[J]. Applied Surface Science, 2021, 569: 151055.

    [55]

    HUANG X, JIA Y, CAO Z, et al. Investigation of the interfacial adsorption mechanisms of 2-hydroxyethyl dibutyldithiocarbamate surfactant on galena and sphalerite[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2019, 583: 123908.

    [56]

    JIA Y, HUANG X, HUANG K, et al. Synthesis, flotation performance and adsorption mechanism of 3-(ethylamino)-N-phenyl-3-thioxopropanamide onto galena/sphalerite surfaces - ScienceDirect[J]. Journal of Industrial and Engineering Chemistry, 2019, 77(C): 416-425.

    [57]

    ZHANG Z, SUN Q, LIU S, et al. The selective flotation separation of galena from sphalerite with a novel collector of 5-amyl-1, 2, 4-triazole-3-thione[J]. Journal of Molecular Liquids, 2021, 332(3): 115902.

    [58]

    胡元, 钟宏, 王帅, 等. 铅锌矿的浮选工艺和浮选药剂研究进展[J]. 河南化工, 2013, 30(7): 21-24. https://www.cnki.com.cn/Article/CJFDTOTAL-HNHU201307005.htm

    [59]

    罗仙平, 周贺鹏, 周跃, 等. 提高某复杂铅锌矿伴生银选矿指标新工艺研究[J]. 矿冶工程, 2011, 31(3): 35-39. https://www.cnki.com.cn/Article/CJFDTOTAL-KYGC201103008.htm

    [60]

    张会文. 乙硫氮浮选铅及铅锌分离的研究[J]. 广东有色金属学报, 1996(2): 89-93. https://www.cnki.com.cn/Article/CJFDTOTAL-GDYS602.001.htm

    [61]

    CELIK IB. Mineralogical interpretation of the collector dosage change on the sphalerite flotation performance[J]. International Journal of Mineral Processing, 2015, 135: 11-19.

    [62]

    WJ T, ALBRECHT J, et al. Critical copper concentration in sphalerite flotation: Effect of temperature and collector[J]. International Journal of Mineral Processing, 2016, 146.

    [63]

    ZHANG W, FENG Z, MULENGA H, et al. Synthesis of a novel collector based on selective nitrogen coordination for improved separation of galena and sphalerite against pyrite[J]. Chemical Engineering Science, 2020, 226: 115860.

    [64]

    KINAL J, GREET C, GOODE I. Effect of grinding media on zinc depression in a lead cleaner circuit[J]. Minerals Engineering 2009, 22(9): 759-765.

    [65]

    松全元. 二氧化硫对闪锌矿可浮性影响的研究[J]. 国外金属矿选矿, 1983(1): 53-60. https://www.cnki.com.cn/Article/CJFDTOTAL-JSXK198301009.htm

    [66]

    KHMELEVA TN, CHAPELET JK, SKINNER WM, et al. Depression mechanisms of sodium bisulphite in the xanthate-induced flotation of copper activated sphalerite[J]. International Journal of Mineral Processing, 2005, 79(1): 61-75.

    [67]

    WEI Z, WANG H, XUE C, et al. Selective depression of sphalerite by combined depressant K3[Fe(CN)6], ZnSO4, and Na2CO3 in Pb-Zn sulfide flotation separation[J]. Chemical Papers, 2020, 74(2): 421-429.

    [68]

    李英霞, 王国生. 从选钨锡尾矿中回收铜锌的研究[J]. 有色金属(选矿部分), 2013(2): 26-29. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXK201302006.htm

    [69]

    朱玉霜, 朱建光. 浮选药剂的化学原理(修订版)[M]. 长沙: 中南工业大学出版社, 1996.

    [70]

    梁溢强, 简胜, 吕家云, 等. 硫化锌抑制剂的研究及进展[J]. 云南冶金, 2020, 49(6): 22-28. https://www.cnki.com.cn/Article/CJFDTOTAL-YNYJ202006005.htm

    [71]

    ZHANG S, DENG Z, XIE X, et al. Study on the depression mechanism of calcium on the flotation of high-iron sphalerite under a high-alkalinity environment[J]. Minerals Engineering, 2021, 160: 106700.

    [72]

    ZANIN M, LAMBERT H, PLESSIS CD. Lime use and functionality in sulphide mineral flotation: A review[J]. Minerals Engineering, 2019, 143: 105922.

    [73]

    EL-SHALL HE, ELGILLANI DA, ABDEL-KHALEK NA. Role of zinc sulfate in depression of lead-activated sphalerite[J]. International Journal of Mineral Processing, 2000, 58(1): 67-75.

    [74]

    吴双桥. 低品位铅锌硫化矿铅锌分离试验研究[J]. 矿产综合利用, 2010(4): 15-19. https://www.cnki.com.cn/Article/CJFDTOTAL-KCZL201004005.htm

    [75]

    陈志强, 胡真, 叶威. 广东某铅锌矿铅锌分离试验研究[J]. 有色金属(选矿部分), 2011(2): 8-11. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXK201102004.htm

    [76]

    祁忠旭, 陈代雄, 杨建文, 等. 宝山铅锌矿抑制剂作用研究[J]. 有色金属(选矿部分), 2011(5): 58-61. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXK201105016.htm

    [77]

    WEI Q, DONG L, QIN W, et al. Efficient flotation recovery of lead and zinc from refractory lead-zinc ores under low alkaline conditions[J]. Chemie der Erde - Geochemistry, 2021: 125769.

    [78]

    薛晨, 魏志聪. 闪锌矿抑制剂的作用机理及研究进展[J]. 矿产综合利用, 2017(3): 38-43. https://www.cnki.com.cn/Article/CJFDTOTAL-KCZL201703006.htm

    [79]

    尧章伟, 方建军, 代宗, 等. 闪锌矿抑制剂的作用机理及研究进展[J]. 矿冶, 2018, 27(4): 16-21. https://www.cnki.com.cn/Article/CJFDTOTAL-KYZZ201804004.htm

    [80]

    龙秋容, 陈建华, 李玉琼, 等. 铅锌浮选分离有机抑制剂的研究[J]. 金属矿山, 2009(3): 54-58. https://www.cnki.com.cn/Article/CJFDTOTAL-JSKS200903016.htm

    [81]

    BOLIN NJ, LASKOWSKI JS. Polysaccharides in flotation of sulphides. Part Ⅱ. Copper/lead separation with dextrin and sodium hydroxide[J]. Elsevier, 1991, 33(1-4): 235-241.

    [82]

    FENG B, ZHONG C, ZHANG L, et al. Effect of surface oxidation on the depression of sphalerite by locust bean gum-ScienceDirect[J]. Minerals Engineering, 2020, 146: 106142.

    [83]

    冯程, 祁忠旭, 孙大勇, 等. 氧化锌矿选矿技术现状与进展[J]. 矿业研究与开发, 2019, 39(9): 105-109. https://www.cnki.com.cn/Article/CJFDTOTAL-KYYK201909023.htm

    [84]

    CUI YF, JIAO F, QIN WQ, et al. Synergistic depression mechanism of zinc sulfate and sodium dimethyl dithiocarbamate on sphalerite in PbZn flotation system - ScienceDirect[J]. Transactions of Nonferrous Metals Society of China, 2020, 30(9): 2547-2555.

    [85]

    PENG H, CAO M, QI L. Selective depression of sphalerite by chitosan in differential PbZn flotation[J]. International Journal of Mineral Processing, 2013, 122: 29-35.

    [86]

    WANG C, LIU R, SUN W, et al. Selective depressive effect of pectin on sphalerite flotation and its mechanisms of adsorption onto galena and sphalerite surfaces[J]. Minerals Engineering, 2021, 170(4): 106989.

    [87]

    CHEN W, CHEN F, ZHANG Z, et al. Investigations on the depressant effect of sodium alginate on galena flotation in different sulfide ore collector systems[J]. Minerals Engineering, 2021, 160: 106705.

    [88]

    李希掌, 曾娜, 向平, 等. 湖南某铅锌矿无碱浮选试验研究[J]. 矿冶工程, 2021, 41(3): 75-78+83. https://www.cnki.com.cn/Article/CJFDTOTAL-KYGC202103018.htm

    [89]

    张豪, 徐宝金, 王明莉, 等. 硫化铅锌矿的新型硫抑制剂作用机理研究[J]. 金属矿山, 2021(9): 91-95. https://www.cnki.com.cn/Article/CJFDTOTAL-JSKS202109014.htm

    [90]

    陈广, 王世涛. 云南某地低品位难选硫化铅锌矿选矿试验研究[C] // 云南省地质学会. 云南省首届青年地质科技论坛优秀学术论文集: 云南省科学技术协会, 2017: 12.

    [91]

    阚赛琼, 劳忠友, 宋涛, 等. 缅甸某硫化铅锌矿浮选试验研究[J]. 云南冶金, 2020, 49(5): 33-37. https://www.cnki.com.cn/Article/CJFDTOTAL-YNYJ202005007.htm

    [92]

    郑文军. 大厂105号矿体铅锌分离无氰工艺试验研究[J]. 矿业工程, 2019, 17(5): 23-28. https://www.cnki.com.cn/Article/CJFDTOTAL-GWKS201905008.htm

    [93]

    杨慧武. 七宝山复杂难选铅锌硫多金属矿选矿生产实践[J]. 有色金属(选矿部分), 2020(3): 35-40. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXK202003007.htm

    [94]

    SARVARAMINI A, LARACHI F, HART B. Collector attachment to lead-activated sphalerite - Experiments and DFT study on pH and solvent effects[J]. Applied Surface Science, 2016, 367(Mar. 30): 459-472.

    [95]

    王伊杰, 文书明, 刘建, 等. 铅锌分离中锌矿物的抑制剂和活化剂及作用机理[J]. 矿冶, 2012, 21(4): 21-25. https://www.cnki.com.cn/Article/CJFDTOTAL-KYZZ201204005.htm

    [96]

    肖丽聪. 内蒙古某锌矿选矿试验研究[J]. 有色矿冶, 2020, 36(4): 22-25. https://www.cnki.com.cn/Article/CJFDTOTAL-YSKY202004006.htm

    [97]

    廖诗进, 何玉良, 岳国利, 等. 某铅锌矿综合回收工艺技术[J]. 矿产综合利用, 2021(3): 9-16. https://www.cnki.com.cn/Article/CJFDTOTAL-KCZL202103002.htm

    [98]

    林蜀勇, 李正要. 河北某铅锌矿铅锌分离试验[J]. 现代矿业, 2015, 31(6): 77-79+83. https://www.cnki.com.cn/Article/CJFDTOTAL-KYKB201506031.htm

    [99]

    胡晓星, 朱阳戈, 郑桂兵. 含银硫化铅锌矿浮选工艺研究[J]. 中国矿业, 2020, 29(9): 110-115. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGKA202009021.htm

    [100]

    李洁, 李英, 宁新霞. 某含银铅锌矿强化铅锌分离和提高银回收率选矿试验研究[J]. 有色金属(选矿部分), 2015(5): 20-23. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXK201505005.htm

    [101]

    程倩, 王明, 万宏民, 等. 某低品位铅锌矿选矿工艺研究[J]. 矿产综合利用, 2021(1): 65-71. https://www.cnki.com.cn/Article/CJFDTOTAL-KCZL202101010.htm

    [102]

    BANERJIBK, 石大新. 活化闪锌矿的新技术[J]. 国外金属矿选矿, 1973(12): 22-27. https://www.cnki.com.cn/Article/CJFDTOTAL-JSXK197312003.htm

  • 加载中

(8)

(3)

计量
  • 文章访问数:  3314
  • PDF下载数:  68
  • 施引文献:  0
出版历程
收稿日期:  2021-08-01
刊出日期:  2021-10-25

目录