-
摘要:
晶质石墨精矿中石墨鳞片尺寸及质量决定其在新兴战略性领域的利用价值,但在碎磨过程中鳞片容易遭到破坏,如何高效保护大鳞片是晶质石墨矿物加工利用研究的关键问题。分析和比较了石墨粗选前高压辊磨超细碎和球磨粗磨两种碎磨机理下产品特性及对鳞片保护的影响,同时对比了再磨时立式搅拌磨螺旋式、圆盘式、叶轮式、棒式四种类型搅拌装置对石墨鳞片保护的效果,指出高压辊磨和立式搅拌磨联合配置在石墨矿山将会有更好的工业应用前景。
Abstract:The utilization value of crystalline graphite concentrate in emerging strategic fields is determined by scale size and quality, but the scales are easily damaged during the crush and grinding process. How to effectively protect large scale is the key problem in the research of crystalline graphite mineral processing. The paper analyzes and compares the characteristics of the product and its influence of two crushing mechanisms of high-pressure grinding roller (HPGR) ultra-fine and ball mill (BM) coarse-grinding on the flake protection before roughing. Meanwhile, the study on the protection of graphite flake was compared with four types of vertical regrinding agitators such as helical screw, rotor disc, impellers and pins. It is pointed out that the combination of high-pressure grinding roller and vertical agitation mill will have a superior industrial application prospect in the graphite mine.
-
-
设备 粒度分布 表面粗糙度 比表面积/(m2·g-1) 接触角(吸附煤油后) 表面形貌 高压辊磨机 粒级范围宽,主要集中在粗粒级 69.21 1.13 108.0° 石墨表面尖锐和存有很多微裂纹,脉石矿物颗粒暴露在石墨表面或边缘处 球磨机 各粒级分布均匀 58.99 0.98 97.3° 颗粒表面裂纹丰富,脉石夹杂在石墨片层间 设备 原矿特性 工艺流程 精矿 品位/% 回收率/% 筛分粒级产率/% +0.27 mm -0.27+0.15 mm -0.27+0.15 mm -0.15 mm 球磨机 该矿石墨片层发育完好,与石英、褐铁矿及方解石矿物密切共生。原矿固定碳含量为3.35%,石墨粒径为20~1 500 μm, 石墨矿物体积占比约为10% 球磨产品、高压辊磨产品分别经一粗一精一扫后,粗精矿均经过三段再磨三段精选流程 96.71 99.16 13.91 48.75 16.13 21.21 高压辊磨机 97.62 97.43 9.01 41.59 19.21 30.20 高压辊磨产品经一粗一精一扫后,粗精矿分质,分质产品分别经一磨两精、两磨两精流程 96.89 97.12 23.79 48.32 12.00 15.89 搅拌器 螺旋式 圆盘式 叶轮式 棒式 模拟仿真图 注:螺旋式、棒式:速度等值图;圆盘式、叶轮式:(左)速度等值图,(右)速度矢量图。 表 4 不同类型搅拌装置石墨立式搅拌磨再磨设备对比[29, 31-40]
Table 4. The comparison of graphite vertical stirring mill regrinding equipments of different types of stirring devices[29, 31-40]
搅拌器类型 槽体形态 转速/(r·min-1) 研磨介质 介质填充率/% 高径比 磨矿质量浓度/% 石墨精矿碳品位/% 高效磨矿区域 类型 直径/mm 螺旋式 圆柱型 40~80 钢球等 / 30~35 3~8:1 10~25 94~96 螺旋叶片外沿周围及靠近筒壁区域 圆盘式 圆柱型 210 陶瓷球、钢化玻璃球、鹅卵石等 10~30 60~65 1.5~3:1 20~25 85~96 搅拌盘两侧附近及外侧与筒壁之间的狭小区域 叶轮式 立方型 300 陶瓷球、玻璃球等 4~12 35~45 1~1.4:1 18~20 95~97 搅拌器上下两侧及外侧与筒壁之间的环形区域 棒式 圆柱型 218/315 锆球、陶瓷型、砂石等 6~12 20~40 1~2.5:1 20~30 92~97 搅拌棒邻近区域 -
[1] 张苏江, 王楠, 崔立伟, 等. 国内外石墨资源供需形势分析[J]. 无机盐工业, 2021, 53(7): 1-11. https://www.cnki.com.cn/Article/CJFDTOTAL-WJYG202107001.htm
[2] JARA A D, BETEMARIAM A, WOLDETINSAE G, et al. Purification, application and current market trend of natural graphite: A review[J]. International Journal of Mining Science and Technology, 2019, 29(5): 671-689. doi: 10.1016/j.ijmst.2019.04.003
[3] 杨卉芃, 张亮, 刘磊. 国外石墨矿产开发利用趋势[J]. 矿产保护与利用, 2019, 39(6): 14-21. http://kcbh.cbpt.cnki.net/WKD/WebPublication/paperDigest.aspx?paperID=cd5d658d-4d65-4863-aecb-e39a42ad984a
[4] SANDMANN D, HASER S, GUTZMER J. Characterisation of graphite by automated mineral liberation analysis[J]. Mineral Processing and Extractive Metallurgy, 2014, 123(3): 184-189. doi: 10.1179/1743285514Y.0000000063
[5] 牛敏, 郭珍旭, 刘磊. 鳞片石墨选矿工艺进展[J]. 矿产保护与利用, 2018(5): 32-39. http://kcbh.cbpt.cnki.net/WKD/WebPublication/paperDigest.aspx?paperID=be946efe-b672-4a2f-b9fc-2260f5a6b911
[6] 宋广业. 鳞片石墨的破磨特性与再磨设备的合理选择[J]. 矿产综合利用, 1993(1): 47-50. https://www.cnki.com.cn/Article/CJFDTOTAL-KCZL199301010.htm
[7] 王韩生. 石墨精矿再磨设备的选择[J]. 矿产保护与利用, 1995(2): 35-37. http://kcbh.cbpt.cnki.net/WKD/WebPublication/paperDigest.aspx?paperID=4b1bdf69-8ad4-480f-a76a-36f287effb4a
[8] 高惠民, 张凌燕, 管俊芳, 等. 石墨、石英、萤石选矿提纯技术进展[J]. 金属矿山, 2020(10): 58-69. https://www.cnki.com.cn/Article/CJFDTOTAL-JSKS202010009.htm
[9] 任京成, 王建利. 石墨浮选精矿单体解离特性研究[J]. 山东建材学院学报, 1994(3): 74-76. https://www.cnki.com.cn/Article/CJFDTOTAL-SDJC403.015.htm
[10] 岳成林. 鳞片石墨大片损失规律及磨浮新工艺研究[J]. 中国矿业, 2007(10): 83-85. doi: 10.3969/j.issn.1004-4051.2007.10.025
[11] VASUMATHI N, VIJAYA KUMAR T V, RATCHAMBIGAI S, et al. Flotation studies on low grade graphite ore from eastern India[J]. International Journal of Mining Science and Technology, 2015, 25(3): 415-420. doi: 10.1016/j.ijmst.2015.03.014
[12] 康健, 黄鹏, 刘爽, 等. 从磨矿性能角度解决大鳞片石墨的保护问题[J]. 矿冶工程, 2020, 40(2): 55-59. doi: 10.3969/j.issn.0253-6099.2020.02.012
[13] 牛敏, 刘磊, 陈龙, 等. 层压粉碎—分质分选技术用于保护大鳞片石墨的研究[J]. 矿产保护与利用, 2018(4): 83-88. http://kcbh.cbpt.cnki.net/WKD/WebPublication/paperDigest.aspx?paperID=6dabcb1c-8b5d-49ee-b19b-ed4e8d11008b
[14] 刘磊, 郭理想, 孙华星, 等. 甘肃阿克塞晶质石墨浮选工艺对比研究[J]. 非金属矿, 2020, 43(6): 56-59. doi: 10.3969/j.issn.1000-8098.2020.06.016
[15] 刘磊, 牛敏, 郭珍旭, 等. 黑龙江某鳞片石墨层压粉碎-分质分选技术研究[J]. 非金属矿, 2019, 42(6): 57-61. doi: 10.3969/j.issn.1000-8098.2019.06.015
[16] 李闯, 孙传尧, 许鹏云, 等. 鳞片石墨在不同磨矿方式下产品特性研究[J]. 炭素技术, 2020, 39(3): 30-35. https://www.cnki.com.cn/Article/CJFDTOTAL-TSJS202003007.htm
[17] MA F, TAO D, TAO Y, et al. An innovative flake graphite upgrading process based on HPGR, stirred grinding mill, and nanobubble column flotation[J]. International Journal of Mining Science and Technology, 2021, doi: 10.1016/J.IJMST.2021.06.005.
[18] WEERASEKARA N S, LIU L X, POWELL M S. Estimating energy in grinding using DEM modelling[J]. Minerals Engineering, 2016, 85: 23-33. doi: 10.1016/j.mineng.2015.10.013
[19] 杨金林, 莫凡, 周文涛, 等. 选择性磨矿研究概述[J]. 矿产综合利用, 2017(5): 1-6. doi: 10.3969/j.issn.1000-6532.2017.05.001
[20] 袁慧珍. 保护大鳞片石墨的磨矿研究[J]. 有色金属(选矿部分), 1995(5): 18-20. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXK505.005.htm
[21] ZHANG H, LI H, FENG A, et al. Application of stirred mill to upgrading of graphite concentrate by flotation[J]. Canadian metallurgical quarterly, 2018, 57(2): 245-251. doi: 10.1080/00084433.2017.1409934
[22] 陈涛, 高惠民, 任子杰, 等. 不同嵌布粒度鳞片石墨的再磨工艺研究[J]. 矿产保护与利用, 2017(4): 48-52. http://kcbh.cbpt.cnki.net/WKD/WebPublication/paperDigest.aspx?paperID=1d18caee-f112-49df-be95-a15d89dd3d96
[23] 尤大海, 贺爱平, 杨勇, 等. 多泥高云母鳞片石墨矿磨矿工艺研究[J]. 资源环境与工程, 2021, 35(2): 260-263. https://www.cnki.com.cn/Article/CJFDTOTAL-HBDK202102026.htm
[24] TONG Z, LIU L, YUAN Z, et al. The effect of comminution on surface roughness and wettability of graphite particles and their relation with flotation[J]. Minerals Engineering, 2021, 169: 106959. doi: 10.1016/j.mineng.2021.106959
[25] 魏波, 张宪伟, 李丽匣, 等. 高压辊磨机粉碎工艺国外应用进展与发展趋势[J]. 金属矿山: 1-11[2022-01-13].
[26] XIAO Q F, LI B, LUO C M, et al. A Review on the Development of High Pressure Roller Mill[J]. Advanced Materials Research, 2013, 734/735/736737: 2734-2737. http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.903.4041&rep=rep1&type=pdf
[27] 余学斌, 方和平, 肖玉菊, 等. 细鳞片中碳石墨的浮选提纯研究[J]. 矿产保护与利用, 2000(1): 14-16. doi: 10.3969/j.issn.1001-0076.2000.01.004 http://kcbh.cbpt.cnki.net/WKD/WebPublication/paperDigest.aspx?paperID=d798228f-c6c9-4bd2-b7ac-39adf3da8907
[28] 邱杨率, 余永富, 管俊芳, 等. 非洲三个地区石墨矿矿石特征及可选性研究[J]. 矿产保护与利用, 2018(5): 45-50. http://kcbh.cbpt.cnki.net/WKD/WebPublication/paperDigest.aspx?paperID=efa319c8-1125-487a-9ed4-92a57b56f900
[29] 龙渊. 保护石墨大鳞片的立式搅拌磨再磨工艺优化研究[D]. 长沙: 长沙矿冶研究院有限责任公司, 2014.
[30] 刘之能, 申士富, 刘海营, 等. 我国石墨选矿技术及装备进展[J]. 现代矿业, 2020, 36(8): 143-146. doi: 10.3969/j.issn.1674-6082.2020.08.042
[31] 何建成, 卢世杰, 周宏喜, 等. 基于离散单元法立式螺旋搅拌磨机内介质运动学研究进展[J]. 有色金属(选矿部分), 2018(1): 90-93. doi: 10.3969/j.issn.1671-9492.2018.01.017
[32] 张国旺, 严金中, 赵湘, 等. 搅拌型球磨机在非金属矿深加工中的应用[J]. 中国非金属矿工业导刊, 2000(1): 22-24. doi: 10.3969/j.issn.1007-9386.2000.01.006
[33] 张延军. 某石墨矿选矿工艺优化研究与应用[J]. 现代矿业, 2018, 34(9): 118-120. doi: 10.3969/j.issn.1674-6082.2018.09.027
[34] 刘佳鹏, 卢世杰, 何建成, 等. GJM型搅拌磨机的优化及其在石墨行业中的应用[J]. 有色金属(选矿部分), 2017(1): 69-73. doi: 10.3969/j.issn.1671-9492.2017.01.016
[35] 周宏喜, 何建成, 孙小旭, 等. GJM型石墨用搅拌磨机的研制与应用[J]. 有色金属: 选矿部分, 2019(2): 5. doi: 10.3969/j.issn.2095-5391.2019.02.003
[36] 余悦, 袁树礼, 任佳. 搅拌磨机用于高品位石墨精矿再磨提纯的试验研究[J]. 有色金属(选矿部分), 2017(4): 71-75. doi: 10.3969/j.issn.1671-9492.2017.04.015
[37] 潘嘉芬. 砂磨机在鳞片石墨选矿中的应用浅议[J]. 非金属矿, 1998(2): 40-42. https://www.cnki.com.cn/Article/CJFDTOTAL-FJSK199802013.htm
[38] 孙小旭. GJM型棒式搅拌磨机工业试验研究[J]. 有色金属(选矿部分), 2017(3): 66-69. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXK201703014.htm
[39] 李荣改, 徐靖, 孙景敏, 等. 立式搅拌磨在豫西南某微细粒晶质石墨矿中的应用[J]. 矿冶工程, 2021, 41(2): 55-58. https://www.cnki.com.cn/Article/CJFDTOTAL-KYGC202102013.htm
[40] 何建成, 孙小旭, 姚建超, 等. 石墨高效再磨擦洗技术及工业试验研究[J]. 有色金属(选矿部分), 2018(2): 78-81. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXK201802017.htm
[41] SINNOTT M, CLEARY P W, MORRISON R. Analysis of stirred mill performance using DEM simulation: Part 1-Media motion, energy consumption and collisional environment[J]. Minerals engineering, 2006, 19(15): 1537-1550. http://www.sciencedirect.com/science?_ob=ShoppingCartURL&_method=add&_eid=1-s2.0-S0892687506002068&originContentFamily=serial&_origin=article&_ts=1439654674&md5=85256765ab406a372ce9e653b0ebaf1b
[42] CLEARY P W, SINNOTT M, MORRISON R. Analysis of stirred mill performance using DEM simulation: Part 2 - Coherent flow structures, liner stress and wear, mixing and transport[J]. Minerals engineering, 2006, 19(15): 1551-1572. http://www.sciencedirect.com/science?_ob=ShoppingCartURL&_method=add&_eid=1-s2.0-S089268750600210X&originContentFamily=serial&_origin=article&_ts=1471302639&md5=cd27e319627a6ce8556d78acae37119a
[43] DDA C, JV B, AI C, et al. Investigating grinding media dynamics inside a vertical stirred mill using the discrete element method: Effect of impeller arm length - ScienceDirect[J]. Powder Technology, 2020, 364: 1049-1061. http://www.sciencedirect.com/science/article/pii/S003259101930765X
[44] RILEY M, PINKNEY S, BLACKBURN S, et al. Spatial distributions of media kinetic energy as measured by positron emission particle tracking in a vertically stirred media mill[J]. Minerals Engineering, 2016, 98: 177-186. http://dx.doi.org/10.1016/j.mineng.2016.08.004
[45] LARSSON S, HEISKARI H. A novel particle-based approach for modeling a wet vertical stirred media mill[J]. Minerals, 2021, 11(1): 55.
[46] 张国旺. 超细搅拌磨机的流场模拟和应用研究[D]. 长沙: 中南大学, 2005.
[47] 袁树礼, 吴建明, 杨俊平. 大型单槽高强度搅拌磨机的研制及在石墨行业的应用[J]. 中国非金属矿工业导刊, 2013(2): 37-39. https://www.cnki.com.cn/Article/CJFDTOTAL-LGFK201302014.htm
[48] WEIJUN P, YANGSHUAI Q, LINGYAN Z, et al. Increasing the fine flaky graphite recovery in flotation via a combined multiple treatments technique of middlings[J]. Minerals, 2017, 7(11): 208.
[49] SUN K, QIU Y, ZHANG L. Preserving flake size in an african flake graphite ore beneficiation using a modified grinding and pre-screening process[J]. Minerals, 2017, 7(7): 115. http://www.onacademic.com/detail/journal_1000040539647910_13f8.html
[50] NDIMANDE C B, CLEARY P W, MAINZA A N, et al. Using two-way coupled DEM-SPH to model an industrial scale Stirred Media Detritor[J]. Minerals Engineering, 2019, 137: 259-276. http://www.onacademic.com/detail/journal_1000042279745099_bf61.html
-