Research Progress on The Properties of Diatomite and Its Application in Biomedical Field
-
摘要:
基于生物纳米材料的药物和设备在精准治疗和个性化治疗方面具有广阔的应用前景。硅藻土作为战略性非金属矿产,其高比表面积、生物相容性、易于表面修饰、热稳定性、高机械和化学抗性以及低成本的特性,使硅藻土在生物医学应用方面具有极大的潜力。介绍了硅藻土材料的结构、表面化学功能化、生物相容性等特性,综述了硅藻土在生物医学领域的药物传递、生物传感、组织工程和止血剂等方面的应用。
Abstract:Drugs and devices based on bio-nanomaterials have promising applications in precision and personalized therapy. Diatomite, as a strategic nonmetallic mineral, has great potential for biomedical applications due to its high specific surface area, biocompatibility, ease of surface modification, thermal stability, high mechanical and chemical resistance, and low cost. The structural properties, purification, surface chemical functionalization, and biocompatibility of diatomite materials are presented, and the applications of diatomite in biomedical fields such as drug delivery, biosensing, tissue engineering, and hemostatic agents are reviewed.
-
Key words:
- diatomite /
- biopharmaceuticals /
- drug carriers /
- nanomaterials /
- biosensing /
-
-
图 1 (a~j)几种海洋硅藻的扫描电子显微镜图像。比例尺=10 μm[12]
Figure 1.
图 2 硅藻土结构及其亲疏水化学成分的表面修饰: 吲哚美辛作为模型药物[31]
Figure 2.
图 3 MTT法评价硅藻土的细胞毒性。20、100、200和300 μg/mL硅藻土在37 ℃下处理H1355细胞24、48和72 h后细胞活力的变化。数据代表平均值±标准差(n=3)。细胞存活率以活细胞百分比表示,与无纳米颗粒作为对照培养的细胞(100%)相比[35]
Figure 3.
图 4 硅藻土载药释放机制[41]
Figure 4.
图 5 硅藻土微胶囊功能化(a)和热响应聚合物接枝硅藻土的药物释放过程(b)[44]
Figure 5.
图 6 活体成像结果(上排),与MRI数据相关,在附磁铁的肿瘤中观察到明显更多的荧光信号,(下排)解剖肿瘤的体外成像,与对照组相比,在被磁铁吸附的肿瘤中,硅藻土的积累量增加了6.4倍[55]
Figure 6.
图 7 DA-diatom-T的设计,凝固工艺,自然凝固过程[65]
Figure 7.
表 1 功能化硅藻土载药在药物传递中的应用
Table 1. Application of surface functionalized diatomite in drug delivery
-
[1] 韩萍. 21世纪生物技术的龙头产业——生物制药[J]. 中学生物教学, 2006(5): 4-5. https://www.cnki.com.cn/Article/CJFDTOTAL-SANG200605003.htm
[2] WANG Y, SANTOS A, EVDOKIOU A, et al. An overview of nanotoxicity and nanomedicine research: principles, progress and implications for cancer therapy[J]. Journal of Materials Chemistry B, 2015, 3(36): 7153-7172. doi: 10.1039/C5TB00956A
[3] 刘颖, 陈春英. 纳米生物效应与安全性研究展望[J]. 科学通报, 2018(35): 3825-3842. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB201835013.htm
[4] 郝庆, 封志明, 王传君. 我国硅藻土开发利用现状及建议[J]. 中国国土资源经济, 2017(7): 17-19. doi: 10.3969/j.issn.1672-6995.2017.07.003
[5] 陈立松, 彭春艳. 世界硅藻土的生产、消费及市场概况[J]. 中国非金属矿工业导刊, 2008(3): 58-59. doi: 10.3969/j.issn.1007-9386.2008.03.020
[6] 吴照洋, 张永兴, 张利珍, 等. 硅藻土资源特点及在战略新兴产业中的应用[J]. 矿产保护与利用, 2019(6): 134-141. http://kcbh.cbpt.cnki.net/WKD/WebPublication/paperDigest.aspx?paperID=04e2eda0-9f4c-40da-9855-35dd344c779c
[7] 张育新, 张新宇, 吴明浩, 等. 硅藻土在新能源领域的应用[J]. 中国材料进展, 2018(5): 331-340. https://www.cnki.com.cn/Article/CJFDTOTAL-XJKB201805002.htm
[8] 周国强, 陈春英, 李玉锋, 等. 纳米材料生物效应研究进展[J]. 进展生物化学与生物物理, 2008(9): 998-1006. https://www.cnki.com.cn/Article/CJFDTOTAL-SHSW200809007.htm
[9] 肖力光, 寇红阳. 硅藻土基复合净化材料的研究进展[J/OL]. 应用化工: 1-5[2021-10-31]. https://doi.org/10.16581/j.cnki.issn1671-3206.20210721.016.
[10] 黄旭, 于工, 沈洧锋, 等. 硅藻土在建材行业的应用研究[J]. 科技风, 2019(28): 172. https://www.cnki.com.cn/Article/CJFDTOTAL-KJFT201928144.htm
[11] 江坤文. 硅藻土过滤技术在饮料酒中的应用[J]. 上海食品科技, 1988(4): 36. https://www.cnki.com.cn/Article/CJFDTOTAL-SPGY198804022.htm
[12] LOSIC D, MITCHELL J G, VOELCKER N H. Diatomaceous Lessons in Nanotechnology and Advanced Materials[J]. Advanced Materials, 2009, 21(29): 2947-2958. doi: 10.1002/adma.200803778
[13] ALMQVIST N, DELAMO Y, SMITH B L, et al. Micromechanical and structural properties of a pennate diatom investigated by atomic force microscopy[J]. Journal of Microscopy, 2001, 202: 518-532. doi: 10.1046/j.1365-2818.2001.00887.x
[14] DRUM R W, GORDON R. Star Trek replicators and diatom nanotechnology[J]. Trends in Biotechnology, 2003, 21(8): 325-328. doi: 10.1016/S0167-7799(03)00169-0
[15] 刘阳. 超声波—微波辅助酸浸提纯硅藻土的试验研究[D]. 徐州: 中国矿业大学, 2016.
[16] 胡志波. 硅藻土及复合材料孔结构和表面特性与调湿性能研究[D]. 北京: 中国矿业大学, 2017.
[17] 杨宇翔, 吴介达, 黄忠良, 等. 几种硅藻土的表面电化学性质的研究[J]. 无机化学学报, 1997(1): 15-19. https://www.cnki.com.cn/Article/CJFDTOTAL-WJHX701.001.htm
[18] ZHOU H, FAN T, ZHANG D. Biotemplated Materials for Sustainable Energy and Environment: Current Status and Challenges[J]. Chemsuschem, 2011, 4(10): 1344-1387. doi: 10.1002/cssc.201100048
[19] 李志威, 代宗, 王宏. 吉林白山地区低品级硅藻土利用现状及开发利用探讨[J]. 中国非金属矿工业导刊, 2021(4): 1-3. doi: 10.3969/j.issn.1007-9386.2021.04.001
[20] 高莹, 韩跃新, 陈晓龙, 等. 分散剂及工艺优化对吉林某低品位硅藻土提纯的影响[J]. 金属矿山, 2015(2): 77-81. https://www.cnki.com.cn/Article/CJFDTOTAL-JSKS201502016.htm
[21] 郑水林, 王利剑, 舒锋, 等. 酸浸和焙烧对硅藻土性能的影响[J]. 硅酸盐学报, 2006(11): 1382-1386. doi: 10.3321/j.issn:0454-5648.2006.11.017
[22] RUGGIERO I, TERRACCIANO M, MARTUCCI N M, et al. Diatomite silica nanoparticles for drug delivery[J]. Nanoscale Research Letters, 2014, 9(1): 329. doi: 10.1186/1556-276X-9-329
[23] 孙林. 长白硅藻土的化学法提纯[D]. 沈阳: 东北大学, 2012.
[24] REA I, TERRACCIANO M, CHANDRASEKARAN S, et al. Bioengineered silicon diatoms: adding photonic features to a nanostructured semiconductive material for biomolecular sensing[J]. Nanoscale Research Letters, 2016, 11.
[25] KARAKOY M, GULTEPE E, PANDEY S, et al. Silane surface modification for improved bioadhesion of esophageal stents[J]. Applied Surface Science, 2014, 311: 684-689. doi: 10.1016/j.apsusc.2014.05.136
[26] DELASOIE J, ZOBI F. Natural diatom biosilica as microshuttles in drug delivery systems[J]. Pharmaceutics, 2019, 11(10).
[27] DHAS N, PAREKH K, PANDEY A, et al. Two dimensional carbon based nanocomposites as multimodal therapeutic and diagnostic platform: A biomedical and toxicological perspective[J]. Journal of Controlled Release, 2019, 308: 130-161. doi: 10.1016/j.jconrel.2019.07.016
[28] 王学凯, 王金淑, 杜玉成, 等. 硅藻土功能化及其应用[J]. 材料导报. 2020(3): 23-33. https://www.cnki.com.cn/Article/CJFDTOTAL-CLDB202003003.htm
[29] BARIANA M, AW M S, KURKURI M, et al. Tuning drug loading and release properties of diatom silica microparticles by surface modifications[J]. International Journal of Pharmaceutics, 2013, 443(1/2): 230-241.
[30] CICCO S R, VONA D, DE GIGLIO E, et al. Chemically Modified Diatoms Biosilica for Bone Cell Growth with Combined Drug-Delivery and Antioxidant Properties[J]. Chempluschem, 2015, 80(7): 1104-1112. doi: 10.1002/cplu.201402398
[31] AW M S, BARIANA M, YU Y, et al. Surface-functionalized diatom microcapsules for drug delivery of water-insoluble drugs[J]. Journal of Biomaterials Applications, 2013, 28(2): 163-174. doi: 10.1177/0885328212441846
[32] CHAO J T, BIGGS M J P, PANDIT A S. Diatoms: a biotemplating approach to fabricating drug delivery reservoirs[J]. Expert Opinion on Drug Delivery, 2014, 11(11): 1687-1695. doi: 10.1517/17425247.2014.935336
[33] TERRACCIANO M, SHAHBAZI M-A, CORREIA A, et al. Surface bioengineering of diatomite based nanovectors for efficient intracellular uptake and drug delivery[J]. Nanoscale, 2015, 7(47): 20063-20074. doi: 10.1039/C5NR05173H
[34] ZHANG H, SHAHBAZI M-A, MAKILA E M, et al. Diatom silica microparticles for sustained release and permeation enhancement following oral delivery of prednisone and mesalamine[J]. Biomaterials, 2013, 34(36): 9210-9219. doi: 10.1016/j.biomaterials.2013.08.035
[35] REA I, MARTUCCI N M, DE STEFANO L, et al. Diatomite biosilica nanocarriers for siRNA transport inside cancer cells[J]. Biochimica Et Biophysica Acta-General Subjects, 2014, 1840(12): 3393-3403. doi: 10.1016/j.bbagen.2014.09.009
[36] LI J, SUN X, ZHANG K, et al. Chitosan/diatom-biosilica aerogel with controlled porous structure for rapid hemostasis[J]. Advanced Healthcare Materials, 2020, 9(21).
[37] YANG H, MA Z, GUAN X, et al. Facile fabrication of diatomite-based sponge with high biocompatibility and rapid hemostasis[J]. Journal of Applied Polymer Science, 2021, 138(46).
[38] DELALAT B, SHEPPARD V C, GHAEMI S R, et al. Targeted drug delivery using genetically engineered diatom biosilica[J]. Nature Communications, 2015, 6.
[39] TERRACCIANO M, DE STEFANO L, TORTIGLIONE C, et al. In vivo toxicity assessment of hybrid diatomite nanovectors using hydra vulgaris as a model system[J]. Advanced Biosystems, 2019, 3(4).
[40] MAHER S, KUMERIA T, AW M S, et al. Diatom silica for biomedical applications: recent progress and advances[J]. Advanced Healthcare Materials, 2018, 7(19): 1800552-1800552. doi: 10.1002/adhm.201800552
[41] AW M S, SIMOVIC S, YU Y, et al. Porous silica microshells from diatoms as biocarrier for drug delivery applications[J]. Powder Technology, 2012, 223: 52-58. doi: 10.1016/j.powtec.2011.04.023
[42] MILOVIC M, SIMOVIC S, LOSIC D, et al. Solid self-emulsifying phospholipid suspension (SSEPS) with diatom as a drug carrier[J]. European Journal of Pharmaceutical Sciences, 2014, 63: 226-232. doi: 10.1016/j.ejps.2014.07.010
[43] JANICIJEVIC J, MILIC J, CALIJA B, et al. Potentiation of the ibuprofen antihyperalgesic effect using inorganically functionalized diatomite[J]. Journal of Materials Chemistry B, 2018, 6(36): 5812-5822. doi: 10.1039/C8TB01376D
[44] VASANI R B, LOSIC D, CAVALLARO A, et al. Fabrication of stimulus-responsive diatom biosilica microcapsules for antibiotic drug delivery[J]. Journal of Materials Chemistry B, 2015, 3(21): 4325-4329. doi: 10.1039/C5TB00648A
[45] IBRAHIM S M, BIN JUMAH M N, OTHMAN S I, et al. Synthesis of chitosan/diatomite composite as an advanced delivery system for Ibuprofen drug; equilibrium studies and the release profile[J]. Acs Omega, 2021, 6(20): 13406-13416. doi: 10.1021/acsomega.1c01514
[46] LOPEZ-CEBRAL R, PENG G, REYS L L, et al. Dual delivery of hydrophilic and hydrophobic drugs from chitosan/diatomaceous earth composite membranes[J]. Journal of Materials Science-Materials in Medicine, 2018, 29(3): 21.
[47] LOSIC D, YU Y, AW M S, et al. Surface functionalisation of diatoms with dopamine modified iron-oxide nanoparticles: toward magnetically guided drug microcarriers with biologically derived morphologies[J]. Chemical Communications, 2010, 46(34): 6323-6325. doi: 10.1039/c0cc01305f
[48] KUMERIA T, BARIANA M, ALTALHI T, et al. Graphene oxide decorated diatom silica particles as new nano-hybrids: towards smart natural drug microcarriers[J]. Journal of Materials Chemistry B, 2013, 1(45): 6302-6311. doi: 10.1039/c3tb21051k
[49] SASIREKHA R, SHEENA T S, DEEPIKA M S, et al. Surface engineered Amphora subtropica frustules using chitosan as a drug delivery platform for anticancer therapy[J]. Materials Science & Engineering C-Materials for Biological Applications, 2019, 94: 56-64.
[50] MARTUCCI N M, MIGLIACCIO N, RUGGIERO I, et al. Nanoparticle-based strategy for personalized B-cell lymphoma therapy[J]. International Journal of Nanomedicine, 2016, 11: 6089-6101. doi: 10.2147/IJN.S118661
[51] DELASOIE J, ROSSIER J, HAENI L, et al. Slow-targeted release of a ruthenium anticancer agent from vitamin B-12 functionalized marine diatom microalgae[J]. Dalton Transactions, 2018, 47(48): 17221-17232. doi: 10.1039/C8DT02914H
[52] TOWNLEY H E, PARKER A R, WHITE-COOPER H. Exploitation of diatom frustules for nanotechnology: tethering active biomolecules[J]. Advanced Functional Materials, 2008, 18(2): 369-374. doi: 10.1002/adfm.200700609
[53] TERRACCIANO M, DE STEFANO L, SANTOS H A, et al. Diatomite nanoparticles as potential drug delivery systems; proceedings of the International Conference on Biophotonics (Biophotonics), Italian National Research Council, Florence Research Area, Florence, ITALY, F 2015May 20-22, 2015[C]. 2015.
[54] GROMMERSCH B M, PANT J, HOPKINS S P, et al. Biotemplated synthesis and characterization of mesoporous nitric oxide-releasing diatomaceous earth silica particles[J]. Acs Applied Materials & Interfaces, 2018, 10(3): 2291-301.
[55] TODD T, ZHEN Z, TANG W, et al. Iron oxide nanoparticle encapsulated diatoms for magnetic delivery of small molecules to tumors[J]. Nanoscale, 2014, 6(4): 2073-2076. doi: 10.1039/c3nr05623f
[56] MAHER S, ALSAWAT M, KUMERIA T, et al. Luminescent silicon diatom replicas: self-reporting and degradable drug carriers with biologically derived shape for sustained delivery of therapeutics[J]. Advanced Functional Materials, 2015, 25(32): 5107-16. doi: 10.1002/adfm.201501249
[57] UTHAPPA U T, BRAHMKHATRI V, SRIRAM G, et al. Nature engineered diatom biosilica as drug delivery systems[J]. Journal of Controlled Release, 2018, 281: 70-83. doi: 10.1016/j.jconrel.2018.05.013
[58] CALLMANN C E, BARBACK C V, THOMPSON M P, et al. Therapeutic enzyme-responsive nanoparticles for targeted delivery and accumulation in tumors[J]. Advanced Materials, 2015, 27(31): 4611-4615. doi: 10.1002/adma.201501803
[59] CRAIGIE R J, FARRELLY P J, SANTOS R, et al. Manchester Arena bombing: lessons learnt from a mass casualty incident[J]. Bmj Military Health, 2020, 166(2): 72-75. doi: 10.1136/jramc-2018-000930
[60] DEATH G B D C. Global, regional, and national age-sex specific mortality for 264 causes of death, 1980-2016: a systematic analysis for the Global Burden of Disease Study 2016 (vol 390, pg 1151, 2017)[J]. Lancet, 2017, 390(10106): E38-E. doi: 10.1016/S0140-6736(17)32649-1
[61] QUAN K, LI G, TAO L, et al. Diaminopropionic acid reinforced graphene sponge and its use for hemostasis[J]. Acs Applied Materials & Interfaces, 2016, 8(12): 7666-7673.
[62] WANG L, PAN K, LI J, et al. Influence of the physicochemical characteristics of diatom frustules on hemorrhage control[J]. Biomaterials Science, 2019, 7(5): 1833-1841. doi: 10.1039/C9BM00099B
[63] LEE J, LEE H A, SHIN M, et al. Diatom frustule silica exhibits superhydrophilicity and superhemophilicity[J]. Acs Nano, 2020, 14(4): 4755-4766. doi: 10.1021/acsnano.0c00621
[64] SHIN M, RYU J H, KIM K, et al. Hemostatic swabs containing polydopamine-like catecholamine chitosan-catechol for normal and coagulopathic animal models[J]. Acs Biomaterials Science & Engineering, 2018, 4(7): 2314-2318.
[65] MU Y, FU Y, LI J, et al. Thrombin immobilized polydopamine-diatom biosilica for effective hemorrhage control[J]. Biomaterials Science, 2021, 9(14): 4952-4967. doi: 10.1039/D0BM02116D
[66] WANG Y, FU Y, LI J, et al. Multifunctional chitosan/dopamine/diatom-biosilica composite beads for rapid blood coagulation[J]. Carbohydrate Polymers, 2018, 200: 6-14. doi: 10.1016/j.carbpol.2018.07.065
[67] SUN X, LI J, SHAO K, et al. A composite sponge based on alkylated chitosan and diatom-biosilica for rapid hemostasis[J]. International Journal of Biological Macromolecules, 2021, 182: 2097-2107. doi: 10.1016/j.ijbiomac.2021.05.123
[68] ZHANG K, LI J, WANG Y, et al. Hydroxybutyl chitosan/diatom-biosilica composite sponge for hemorrhage control[J]. Carbohydrate Polymers, 2020, 236: 116051. doi: 10.1016/j.carbpol.2020.116051
[69] LOPEZ-ALVAREZ M, SOLLA E L, GONZALEZ P, et al. Silicon-hydroxyapatite bioactive coatings (Si-HA) from diatomaceous earth and silica. Study of adhesion and proliferation of osteoblast-like cells[J]. Journal of Materials Science-Materials in Medicine, 2009, 20(5): 1131-1136. doi: 10.1007/s10856-008-3658-0
[70] HERTZ A, FITZGERALD V, PIGNOTTI E, et al. Preparation and characterisation of porous silica and silica/titania monoliths for potential use in bone replacement[J]. Microporous and Mesoporous Materials, 2012, 156: 51-61. doi: 10.1016/j.micromeso.2012.02.004
[71] THI DUY HANH L, BONANI W, SPERANZA G, et al. Processing and characterization of diatom nanoparticles and microparticles as potential source of silicon for bone tissue engineering[J]. Materials Science & Engineering C-Materials for Biological Applications, 2016, 59: 471-479.
[72] TAMBURACI S, TIHMINLIOGLU F. Diatomite reinforced chitosan composite membrane as potential scaffold for guided bone regeneration[J]. Materials Science & Engineering C-Materials for Biological Applications, 2017, 80: 222-231.
[73] TAMBURACI S, TIHMINLIOGLU F. Biosilica incorporated 3D porous scaffolds for bone tissue engineering applications[J]. Materials Science & Engineering C-Materials for Biological Applications, 2018, 91: 274-291.
[74] TAMBURACI S, KIMNA C, TIHMINLIOGLU F. Bioactive diatomite and POSS silica cage reinforced chitosan/Na-carboxymethyl cellulose polyelectrolyte scaffolds for hard tissue regeneration[J]. Materials Science & Engineering C-Materials for Biological Applications, 2019, 100: 196-208.
[75] DE STEFANO L, ROTIROTI L, DE STEFANO M, et al. Marine diatoms as optical biosensors[J]. Biosensors & Bioelectronics, 2009, 24(6): 1580-1584.
[76] KAMINSKA A, SPRYNSKYY M, WINKLER K, et al. Ultrasensitive SERS immunoassay based on diatom biosilica for detection of interleukins in blood plasma[J]. Analytical and Bioanalytical Chemistry, 2017, 409(27): 6337-6347. doi: 10.1007/s00216-017-0566-5
[77] KONG X, LI E, SQUIRE K, et al. Plasmonic nanoparticles-decorated diatomite biosilica: extending the horizon of on-chip chromatography and label-free biosensing[J]. Journal of Biophotonics, 2017, 10(11): 1473-1484. doi: 10.1002/jbio.201700045
[78] KONG X, CHONG X, SQUIRE K, et al. Microfluidic diatomite analytical devices for illicit drug sensing with ppb-Level sensitivity[J]. Sensors and Actuators B-Chemical, 2018, 259: 587-595. doi: 10.1016/j.snb.2017.12.038
-