-
摘要:
针对四川黏土型稀土矿中稀土元素、钪含量低,铝和钙含量高,钪元素难以浸出等问题,提出采用碱分解—盐酸浸出工艺来处理该黏土型稀土矿,考察了初始酸度、矿浆液固比、浸出温度和浸出时间等浸出条件对钪浸出的影响。结果表明: 在初始盐酸浓度9 mol/L、矿浆液固质量比2:1、反应温度90 ℃、反应时间60 min的条件下,Sc的浸出率为94%左右,Al、Ca、Fe、Mg和Ti等元素浸出率分别为45%、98%、68%、91%和71%左右,实现了四川黏土型稀土矿中Sc元素的浸出和提取利用。
Abstract:In view of the existing problems for the Sichuan clay rare earth ore, such as low content of rare earth elements, high content of Al and Ca and difficult in leaching of Sc, a process consisting of alkaline decomposition - hydrochloric acid leaching was adopted in the experiment. The effect of initial acid concentration, liquid to solid ratio, leaching temperature and leaching time on the leaching of Sc was explored. The results show that leaching at a temperature of 90 ℃ for 60 min with an initial hydrochloric acid concentration of 9 mol/L and liquid to solid ratio of 2 : 1 resulted in an average leaching rate of Sc reaching 94%, the total leaching rate of Al, Ca, Fe, Mg and Ti were 45%, 98%, 68% and 71% respectively. This process can realize the leaching, extraction and utilization of Sichuan clay type rare earth ore.
-
Key words:
- rare earth ore /
- alkali decomposition /
- leaching /
- scandium
-
-
表 1 四川黏土型稀土矿化学成分
/% Table 1. Chemical composition of Sichuan claytype rare earth ore
成分 SiO2 Al2O3 TiO2 TFe2O3 CaO TREO 含量 40.93 13.94 4.31 14.03 15.69 0.047 表 2 各阶段矿化学成分含量
/% Table 2. Mineral chemical composition content of each stage
原矿 Sc* Al Ca Fe Mg Ti 含量 18.55 7.07 9.79 8.02 0.65 2.27 碱解矿 Sc* Al Ca Fe Mg Ti 含量 17.14 6.16 8.89 7.17 0.61 2.08 *: Sc化学成分含量单位为g/t。 -
[1] WANGW, PRANOLO Y, CHENG CY. Metallurgical processes for scandium recovery from various resources: a review[J]. Hydrometallurgy, 2011, 108(1/2): 100-108. https://www.sciencedirect.com/science/article/pii/S0304386X11000648
[2] KERKOVEMA, WOODT D, SANDERS PG, et al. The diffusion coefficient of scandium in dilute aluminum-scandium alloys[J]. Metall. Mater. Trans. 2014, A45(9): 3800-3805. https://link.springer.com/article/10.1007/s11661-014-2275-4
[3] YIN Y, XIONG MW, YANG NT. Investigation on thermal, electrical, and electrochemical properties of scandium-doped Pr0.6Sr0.4(Co0.2Fe0.8)(1-x)ScxO3-δ as cathode for IT-SOFC[J]. Int. J. Hydrog. Energy, 2011, 36(6): 3989-3996. doi: 10.1016/j.ijhydene.2010.12.113
[4] 吕宪俊, 程希翱. 攀枝花铁矿石中钪的赋存状态研究[C]//第5届全国工艺矿物学学术会议论文集, 1993, 113-118.
[5] 尹志民. 钪和含钪合金[M]. 长沙, 中南大学出版社, 2007.
[6] 张国成, 黄小卫. 氟碳铈矿冶炼工艺述评[J]. 稀有金属, 1997, 21(3): 193-199. https://www.cnki.com.cn/Article/CJFDTOTAL-ZXJS703.007.htm
[7] 黄小卫, 李红卫, 薛向欣, 等. 我国稀土湿法冶金发展状况及研究进展[J]. 中国稀土学报, 2006, 24(2): 131-133. https://www.cnki.com.cn/Article/CJFDTOTAL-XTXB200602000.htm
[8] SHREY AGRAWAL, NIKHIL DHAWAN. Microwave acid baking of red mud for extraction of titanium and scandium values[J]. Hydrometallurgy, 2021, 204: 105704. https://www.sciencedirect.com/science/article/pii/S0304386X21001535
[9] BONOMI C, ALEXANDRI A, VIND J, et al. Scandium and titanium recovery from bauxite residue by direct leaching with a Brønsted acidic ionic liquid[J]. Metals, 2018, 8(10): 834.
[10] VIND J, MALFLIET A, BONOMI C, et al. Modes of occurrences of scandium in Greek bauxite and bauxite residue[J]. Miner. Eng, 2018, 123: 5-48. https://www.sciencedirect.com/science/article/pii/S0892687518301894
-