氧化预处理技术在铜钼硫化矿浮选分离中的研究进展

刘曙光, 彭伟军, 王伟, 吕帅, 曹亦俊. 氧化预处理技术在铜钼硫化矿浮选分离中的研究进展[J]. 矿产保护与利用, 2022, 42(1): 34-44. doi: 10.13779/j.cnki.issn1001-0076.2022.01.006
引用本文: 刘曙光, 彭伟军, 王伟, 吕帅, 曹亦俊. 氧化预处理技术在铜钼硫化矿浮选分离中的研究进展[J]. 矿产保护与利用, 2022, 42(1): 34-44. doi: 10.13779/j.cnki.issn1001-0076.2022.01.006
LIU Shuguang, PENG Weijun, WANG Wei, LV Shuai, CAO Yijun. Research Progress of Oxidation Pretreatment Technology in the Flotation Separation of Copper-molybdenum Sulphide Minerals[J]. Conservation and Utilization of Mineral Resources, 2022, 42(1): 34-44. doi: 10.13779/j.cnki.issn1001-0076.2022.01.006
Citation: LIU Shuguang, PENG Weijun, WANG Wei, LV Shuai, CAO Yijun. Research Progress of Oxidation Pretreatment Technology in the Flotation Separation of Copper-molybdenum Sulphide Minerals[J]. Conservation and Utilization of Mineral Resources, 2022, 42(1): 34-44. doi: 10.13779/j.cnki.issn1001-0076.2022.01.006

氧化预处理技术在铜钼硫化矿浮选分离中的研究进展

  • 基金项目:
    国家重点研发计划(2020YFC1908804)
详细信息
    作者简介: 刘曙光(1996-), 男, 硕士研究生, 研究方向为低品位资源高效加工与利用, E-mail: 3100878340@qq.com
    通讯作者: 彭伟军(1986-), 男, 博士, 硕士生导师, 研究方向为低品位矿产资源高效加工与利用、化工选冶固废资源化, E-mail: pwj@zzu.edu.cn
  • 中图分类号: TD923+.14;TD952.1

Research Progress of Oxidation Pretreatment Technology in the Flotation Separation of Copper-molybdenum Sulphide Minerals

More Information
  • 黄铜矿和辉钼矿是两种典型的硫化矿, 其浮选分离一直是业界关注的焦点。硫化矿易氧化, 矿物表面氧化程度和氧化产物类型对其浮选行为有重要影响。黄铜矿、辉钼矿在浮选之前进行氧化预处理, 它们会产生不同程度的氧化和不同类型的氧化产物, 这些原因使矿物的表面原有的性质发生改变, 从而改变矿物固有的浮选行为, 实现黄铜矿和辉钼矿的浮选分离。论文介绍了黄铜矿、辉钼矿的表面特性, 分析了其表面氧化机理, 综述了铜钼硫化矿氧化浮选分离的研究现状, 旨在为铜钼硫化矿物绿色、高效浮选分离提供一定的借鉴。

  • 加载中
  • 图 1  黄铜矿的晶体结构[18-19]

    Figure 1. 

    图 2  辉钼矿的晶体结构[23]

    Figure 2. 

    图 3  辉钼矿在10 mmol/L NaCl溶液中的表面和端面的表面电位[26]

    Figure 3. 

    图 4  在缩合模型下有钝化层存在时黄铜矿浸出的离子变换过程[28]

    Figure 4. 

    图 5  黄铜矿表面界面反应面模型[37]

    Figure 5. 

    图 6  (a) 在pH 9和pH 11的0.1 M NaCl中MoS2层面和端面电极的初始OCP(mV)[39];(b)在辉钼矿电极上以1.4 V电压在10 s内进行800 s恒电位试验的结果[41]

    Figure 6. 

    图 7  辉钼矿氧化示意图[42]

    Figure 7. 

    图 8  (a) 辉钼矿表面和端面接触角图像[48](接触角使用座滴法测量);(b)先前研究中的表面和端面的接触角[48](接触角使用座滴法测量);(c)不同粒径的辉钼矿的接触角[50](接触角是用压片法测量的)

    Figure 8. 

    图 9  黄铜矿和辉钼矿表面氧化机理示意图[54]

    Figure 9. 

    表 1  常用的黄铜矿抑制剂

    Table 1.  Common chalcopyrite inhibitors

    常用抑制剂 优点 缺点
    硫化物 价格便宜,操作简单 用量大,污染环境
    氰化物 用量小,效果好 有剧毒,污染环境
    诺克斯 速度快,用量少 易爆炸,产生H2S
    巯基乙酸钠 用量少,效果好 价格昂贵
    下载: 导出CSV
  • [1]

    贾红秀, 高丽梅, 姜威. 钼市场30年回顾与展望[J]. 中国钼业, 2006, 30(1): 42-47. doi: 10.3969/j.issn.1006-2602.2006.01.012

    JIA H X, Gao L M, JIANG W. Review of the 30 year's molybdenumm market and itsprospect[J]. China Molybdenum Industry, 2006, 30(1): 42-47. doi: 10.3969/j.issn.1006-2602.2006.01.012

    [2]

    LIU G Y, LU Y P, ZHONG H, et al. A novel approach for preferential flotation recovery of molybdenite from a porphyry copper-molybdenum ore[J]. Minerals Engineering, 2012, 36-38: 37-44. doi: 10.1016/j.mineng.2012.02.008

    [3]

    朱龙刚, 李宇宏. 铜钼分离研究现状与进展[J]. 矿山机械, 2015, 43(11): 16-20. https://www.cnki.com.cn/Article/CJFDTOTAL-KSJX201511004.htm

    ZHU L G, LI Y H. Research status and progress of copper-molybdenum separation technology[J]. Mechanical Mining, 2015, 43(11): 16-20. https://www.cnki.com.cn/Article/CJFDTOTAL-KSJX201511004.htm

    [4]

    张村. 硫化铜钼矿的新型抑制剂及其机理研究[D]. 赣州: 江西理工大学, 2017.

    ZHANG C. Research on the new Inhibitor of sulfide copper-molybdenum mine and its mechanism[D]. Ganzhou: Jiangxi University of Science and Technology, 2017.

    [5]

    赵镜, 张文钲, 王广文. 巯基乙酸钠抑制黄铜矿机理的研究[J]. 有色金属, 1988(3): 44-47. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXK198803011.htm

    ZHAO J, ZHANG W Z, WANG G W. Study on the mechanism of sodium mercaptoacetate inhibiting chalcopyrite[J]. Nonferrous Metals, 1988(3): 44-47. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXK198803011.htm

    [6]

    吴康平, 余乐. 新型组合抑制剂在铜钼分离浮选中的应用[J]. 现代矿业, 2018, 34(1): 164-166. doi: 10.3969/j.issn.1674-6082.2018.01.031

    WU K P, YU L. Application of novel combination inhibitor in copper-molybdenum separation flotation[J]. Modem Mining, 2018, 34(1): 164-166. doi: 10.3969/j.issn.1674-6082.2018.01.031

    [7]

    黄济存. 氮气在铜钼分选上的作用[J]. 有色矿山, 1994(1): 61-63. https://www.cnki.com.cn/Article/CJFDTOTAL-YSKS401.006.htm

    HUANG J C. Effect of nitrogen on separation of copper and molybdenum [J]. Nonferrous Mines, 1994(1): 61-63. https://www.cnki.com.cn/Article/CJFDTOTAL-YSKS401.006.htm

    [8]

    刘磊, 吕良, 马瑛, 等. 含铜钼精矿超导磁分离试验研究[J]. 矿产保护与利用, 2017(1): 55-58. http://kcbh.cbpt.cnki.net/WKD/WebPublication/paperDigest.aspx?paperID=56a2ba85-56dc-4692-b76f-866e23362471

    LIU L, LV L, MA Y, et al. Study on superconducting magnetic separation dealing with fine molybdenum concentrate containing copper[J]. Conservation and Utilization of Mineral Resources, 2017(1): 55-58. http://kcbh.cbpt.cnki.net/WKD/WebPublication/paperDigest.aspx?paperID=56a2ba85-56dc-4692-b76f-866e23362471

    [9]

    黄鹏亮, 杨丙桥, 胡杨甲, 等. 氧化预处理对铜钼浮选分离效果的影响[J]. 矿冶工程, 2021, 41(3): 46-56. doi: 10.3969/j.issn.0253-6099.2021.03.011

    HUANG P L, YANG B Q, HU Y J, et al. Influence of oxidation pretreatment on chalcopyrite-molybdenite flotation separation efficiency[J]. Mining and Metallurgical Engineering, 2021, 41(3): 46-56. doi: 10.3969/j.issn.0253-6099.2021.03.011

    [10]

    张力先, 高玉武. 矿物表面特性与可浮性关系综述[J]. 黄金学报, 2000, 2(1): 30-33. https://www.cnki.com.cn/Article/CJFDTOTAL-HUJI200001007.htm

    ZHANG L X, GAO Y W. Summarization of relation between surface properties and float-ability of minerals[J]. Gold Journal, 2000, 2(1): 30-33. https://www.cnki.com.cn/Article/CJFDTOTAL-HUJI200001007.htm

    [11]

    肖策环. 微细粒黄铜矿表面特性与可浮性关系研究[D]. 赣州: 江西理工大学, 2016.

    XIAO C H. The study on the relationship between the surface characteristics and flotability of micro fine chalcopyrite[D]. Ganzhou: Jiangxi University of Science and Technology, 2016.

    [12]

    吕建业, 沈耀平, 张洪恩. 辉钼矿表面特性及其可浮性的研究[J]. 有色金属, 1992(4): 4-8. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXK199204001.htm

    LV J P, SHEN Y P, ZHANG H E. Study of surface properties of pyromorphite and its floatability[J]. Nonferrous Metals: Mineral Processing Section, 1992(4): 4-8. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXK199204001.htm

    [13]

    尚新华. 氧化对黄铜矿无捕收剂浮选的影响[J]. 现代矿业, 1998(1): 12-17. https://www.cnki.com.cn/Article/CJFDTOTAL-KYKB199801001.htm

    SHANG X H. Effects of surface oxidation on sulphide mineral flotation[J]. Modern mining, 1988(1): 12-17. https://www.cnki.com.cn/Article/CJFDTOTAL-KYKB199801001.htm

    [14]

    柯家骏. 辉钼矿晶面特性工艺矿物学的研究[J]. 化工冶金, 1981(4): 37-43. https://www.cnki.com.cn/Article/CJFDTOTAL-HGYJ198104003.htm

    HE J J. Study of the process mineralogy of the crystalline surface properties of pyromorphite[J]. Chemical Metallurgy, 1981(4): 37-43. https://www.cnki.com.cn/Article/CJFDTOTAL-HGYJ198104003.htm

    [15]

    吕建业. 辉钼矿的表面特性及其浮选行为的研究[D]. 沈阳: 东北大学, 1989.

    LV J Y. Study of surface properties of pyromorphite and its flotation behavior[D]. Shenyang: Northeastern University, 1989.

    [16]

    HUAI Y, PLACKOWSKI C, PENG Y. The surface properties of pyrite coupled with gold in the presence of oxygen[J]. Minerals Engineering, 2017, 111: 131-139. doi: 10.1016/j.mineng.2017.06.013

    [17]

    RAO M Y, NATARAJAN K A. Influence of galvanic interaction between chalcopyrite and some metallic materials on flotation[J]. Minerals Engineering, 1988, 1(4): 281-294. doi: 10.1016/0892-6875(88)90018-0

    [18]

    聂庆民. 黄铜矿表面性质及CN-在其表面吸附的密度泛函理论研究[D]. 赣州: 江西理工大学, 2017.

    NIE Q M. Density Functional Theory study on the surface properties of chalcopyrite and the adsorption of CN-on its surface[D]. Ganzhou: Jiangxi University of Science and Technology, 2017.

    [19]

    牛晓鹏. 方铅矿, 黄铜矿和黄铁矿表面氧化与可浮性研究[D]. 北京: 中国科学院大学, 2019.

    NIU X P. Correlation of surface oxidation of galena, chalcopyrite and pyrite with their floatability[D]. Beijing: University of Chinese Academy of Sciences, 2019.

    [20]

    YANG Y. The effect of microorganisms on the surface properties of chalcopyrite[D]. Adelaide: Flinders University, 2014.

    [21]

    邓久帅. 黄铜矿流体包裹体组分释放及其与弛豫表面的相互作用[D]. 昆明: 昆明理工大学, 2013.

    DENG J S. Release of chalcopyrite fluid inclusion components and their interactions with relaxation surfaces [D]. Kunming: Kunming University of Science and Technology, 2013.

    [22]

    CASTRO S, LOPEZ-VALDIVIESO A, LASKOWSKI J S. Review of the flotation of molybdenite. Part I: Surface properties and floatability[J]. International Journal of Mineral Processing, 2016, 148: 48-58.

    [23]

    李万青. 海水浮选辉钼矿作用机理研究[D]. 武汉: 武汉理工大学, 2019.

    LI W Q. The fundamental mechanisms of seawater on the flotation of molybdenite [D]. Wuhan: Wuhan University of Technology, 2019.

    [24]

    魏桢伦, 李育彪. 辉钼矿晶面各向异性及其对浮选的影响机制[J]. 矿产保护与利用, 2018(3): 31-36. http://kcbh.cbpt.cnki.net/WKD/WebPublication/paperDigest.aspx?paperID=1ee5dc34-c77c-489c-a973-3cc6879a6802

    WEI Z L, LI Y B. Anisotropy of molybdenite surface and its effects on flotation mechanism[J]. Conservation and Utilization of Mineral Resources, 2018(3) : 31-36. http://kcbh.cbpt.cnki.net/WKD/WebPublication/paperDigest.aspx?paperID=1ee5dc34-c77c-489c-a973-3cc6879a6802

    [25]

    谢小燕, 邱显扬, 罗传胜, 等. 辉钼矿可浮选性及其捕收剂的研究进展[J]. 中国钼业, 2013, 37(5): 29-32. doi: 10.3969/j.issn.1006-2602.2013.05.006

    XIE X Y, QIU X Y, LOU C S, et al. Research progress on floatbility of molybdenite and its collectors[J]. China Molybdenum Industry, 2013, 37(5): 29-32. doi: 10.3969/j.issn.1006-2602.2013.05.006

    [26]

    LU Z, LIU Q, XU Z, et al. Probing anisotropic surface properties of molybdenite by direct force measurements[J]. Langmuir the Acs Journal of Surfaces & Colloids, 2015, 31(42): 11409-11418.

    [27]

    赵晋宁. 酸性条件下黄铜矿氧化钝化过程的电化学研究[D]. 广州: 华南理工大学, 2013.

    ZHAO J N. Electrochemical study of the chalcopyrite oxidation and passivation in the acid mediums[D]. Guangzhou: South China University of Technology, 2013.

    [28]

    蔡长江. 黄铜矿的氧化及其钝化研究[D]. 广州: 华南理工大学, 2014.

    CAI C J. The oxidation and passivation of chalcopyrite[D]. Guangzhou: South China University of Technology, 2014.

    [29]

    GUO H. Electrochemistry and flotation of enargite and chalcopyrite[D]. Kingston: Queen's University at Kingston, 2004.

    [30]

    PRICE DW, WARREN GW. The influence of silver ion on the electrochemical response of chalcopyrite and other mineral sulfide electrodes in sulfuric acid[J]. Hydrometallurgy, 1986, 15(3): 303-324. doi: 10.1016/0304-386X(86)90063-0

    [31]

    WARREN GW, SOHN HJ, WADSWORTH ME, et al. The effect of electrolyte composition on the cathodic reduction of CuFeS2[J]. Hydrometallurgy, 1985, 14(2): 133-149. doi: 10.1016/0304-386X(85)90030-1

    [32]

    何卓起, 俞瑞, 贺政, 等. 硫化矿浮选外加电场预处理理论基础的探讨[J]. 有色金属, 1998(4): 46-50. https://www.cnki.com.cn/Article/CJFDTOTAL-YOUS199804008.htm

    HE Z Q, YU R, HE Z, et al. Theoretical basls of external electrical fleld pretreatment for sulflde flotation[J]. Nonferrous Metals, 1998(4): 46-50. https://www.cnki.com.cn/Article/CJFDTOTAL-YOUS199804008.htm

    [33]

    BIEGLER T, SWIFT D A. Anodic electrochemistry of chalcopyrite[J]. Journal of Applied Electrochemistry, 1979, 9(5): 545-554. doi: 10.1007/BF00610940

    [34]

    AN, BUCKLEY, WOODS. An X-ray photoelectron spectroscopic study of the oxidation of chalcopyrite[J]. Australian Journal of Chemistry, 1984, 37(12): 2403-2413. doi: 10.1071/CH9842403

    [35]

    HIROYOSHI N, HIROTA M, HIRAJIMA T, et al. A case of ferrous sulfate addition enhancing chalcopyrite leaching[J]. Hydrometallurgy, 1997, 47(1): 37-45. doi: 10.1016/S0304-386X(97)00032-7

    [36]

    HARMER SL, THOMAS JE, FORNASIERO D, et al. The evolution of surface layers formed during chalcopyrite leaching[J]. Geochimica Et Cosmochimica Acta, 2006, 70(17): 4392-4402. doi: 10.1016/j.gca.2006.06.1555

    [37]

    HUA XM, ZHENG YF, XU Q, et al. Interfacial reactions of chalcopyrite in ammonia-ammonium chloride solution[J]. Transactions of Nonferrous Metals Society of China, 2018, 28(3): 556-566. doi: 10.1016/S1003-6326(18)64688-6

    [38]

    CHANDER S, FUERSTENAU D W. On the naturalfloatability of molybdenite[J]. AIME, 1972, 252: 62-69.

    [39]

    WANG J, XIE L, LU Q, et al. Electrochemical investigation of the interactions of organic and inorganic depressants on basal and edge planes of molybdenite[J]. Journal of Colloid and Interface Science, 2020, 570(3).

    [40]

    CHANDER S, FUERSTENAU DW. Electrochemical flotation separation of chalcocite from molybdenite[J]. International Journal of Mineral Processing, 1983, 10(2): 89-94. doi: 10.1016/0301-7516(83)90035-2

    [41]

    MIKI H M H, HIRAJIMA T, SUYANTARA GPW, SASAKI K. Electrolysis oxidation of chalcopyrite and molybdenite for selective flotation[J]. Materials Transactions, 2017, 58(5): 761-767. doi: 10.2320/matertrans.M-M2017807

    [42]

    LI Y, CLEMENT L, SONG S, et al. The fundamental roles of monovalent and divalent cations with sulfates on molybdenite flotation in the absence of flotation reagents[J]. RSC Advances, 2018, 8(41): 23364-23371. doi: 10.1039/C8RA02690D

    [43]

    李晖. 硫化矿物的浮选电化学和浮选行为探析[J]. 石化技术, 2016, 23(3): 82. doi: 10.3969/j.issn.1006-0235.2016.03.066

    LI H. Flotation electrochemistry and flotation behavior of sulfide ineral[J]. Petrochemical Technology, 2016, 23(3): 82. doi: 10.3969/j.issn.1006-0235.2016.03.066

    [44]

    HARADA T, KUNIYOSHI N. Effects of surface oxidation on sulphide mineral flotation[J]. Flotation, 1984, 31(1): 55-66. doi: 10.4144/rpsj1954.31.55

    [45]

    LUTTRELL G H, YOON R H. The collectorless flotation of chalcopyrite ores using sodium sulfide[J]. International Journal of Mineral Processing, 1984, 13(4): 271-283. doi: 10.1016/0301-7516(84)90048-6

    [46]

    FAIRTHORNE G, FORNASIERO D, RALSTON J. Effect of oxidation on the collectorless flotation of chalcopyrite[J]. International Journal of Mineral Processing, 1997, 49(1/2): 31-48.

    [47]

    ZHENLUN W, YUBIAO L, LINGYUN H. New insight into the anisotropic property and wettability of molybdenite: A DFT study[J]. Minerals Engineering, 2021, 170: 107058. doi: 10.1016/j.mineng.2021.107058

    [48]

    XIE L, WANG J, HUANG J, et al. Anisotropic polymer adsorption on molybdenite basal and edge surfaces and interaction mechanism with air bubbles[J]. Frontiers in chemistry, 2018: 361.

    [49]

    LI Y, YANG X, FU J, et al. New insights into the beneficial roles of dispersants in reducing negative influence of Mg2+ on molybdenite flotation[J]. RSC Advances, 2020, 10(46): 27401-27406. doi: 10.1039/D0RA05556E

    [50]

    HE T, HUI L, JIN J, et al. Improving fine molybdenite flotation using a combination of aliphatic hydrocarbon oil and polycyclic aromatic hydrocarbon[J]. Results in Physics, 2019, 12: 1050-1055. doi: 10.1016/j.rinp.2018.12.010

    [51]

    HONG G, JUNHYUN C, HAN Y, et al. Relationship between surface characteristics and floatability in representative sulfide minerals: Role of surface oxidation[J]. Materials transactions, 2017, 58(7): 1069-1075. doi: 10.2320/matertrans.M2017014

    [52]

    HIRAJIMA T, MIKI H, SUYANTARA G, et al. Selective flotation of chalcopyrite and molybdenite with H2O2 oxidation[J]. Minerals Engineering, 2017, 100: 83-92. doi: 10.1016/j.mineng.2016.10.007

    [53]

    HUANG H H, LU M C, CHEN J N. Catalytic decomposition of hydrogen peroxide and 2-chlorophenol with iron oxides[J]. Water Research, 2001, 35(9): 2291-2299. doi: 10.1016/S0043-1354(00)00496-6

    [54]

    WISNU S, TSUYOSHI H, HAJIME M, et al. effect of fenton-like oxidation reagent on hydrophobicity and floatability of chalcopyrite and molybdenite[J]. Colloids & Surfaces A Physicochemical & Engineering Aspects, 2018, 554: 34-48.

    [55]

    SHARMA V K. Potassium ferrate(Ⅵ): an environmentally friendly oxidant[J]. Advances in Environmental Research, 2002, 6(2): 143-156. doi: 10.1016/S1093-0191(01)00119-8

    [56]

    LIAO R, FENG Q, WEN S, et al. Flotation separation of molybdenite from chalcopyrite using ferrate(Ⅵ) as selective depressant in the absence of a collector[J]. Minerals Engineering, 2020, 152: 106369. doi: 10.1016/j.mineng.2020.106369

    [57]

    GUO H, JIANG N, WANG H, et al. Pulsed discharge plasma induced WO3 catalysis for synergetic degradation of ciprofloxacin in water: Synergetic mechanism and degradation pathway[J]. Chemosphere, 2019, 230: 190. doi: 10.1016/j.chemosphere.2019.05.011

    [58]

    HAO Z, MA D, QIU R, et al. Non-thermal plasma technology for organic contaminated soil remediation: A review[J]. Chemical Engineering Journal, 2016, 313: 157-170.

    [59]

    HIRAJIMA T, MORI M, ICHIKAWA O, et al. Selective flotation of chalcopyrite and molybdenite with plasma pre-treatment[J]. Minerals Engineering, 2014, 66: 102-111.

    [60]

    GREENLEE L F, LAWLER D F, FREEMAN B D, et al. Reverse osmosis desalination: water sources, technology, and today's challenges[J]. Water Research, 2009, 43(9): 2317-2348.

    [61]

    傅佳丽, 李育彪, 王洪铎, 等. 浸泡预处理对铜钼硫化矿浮选分离的影响机理[J]. 金属矿山, 2020, 49(2): 29-32.

    FU J L, LI Y B, WANG H Z, et al. Mechanisms of soaking pre-treatment on flotation separation of copper-molybdenum sulfide Ore[J]. Metal Mine, 2020, 49(2): 29-32.

    [62]

    王志杰, 李育彪, 王洪铎, 等. 微波预处理对铜钼硫化矿海水浮选的影响机理[J]. 金属矿山, 2020, 49(2): 19-23. https://www.cnki.com.cn/Article/CJFDTOTAL-JSKS202002005.htm

    WANG Z J, LI Y B, WANG H Z, et al. Effect of microwave pretreatment on cu-mo Sulfide mineral flotation in sea water[J]. Metal Mine, 2020, 49(2): 19-23. https://www.cnki.com.cn/Article/CJFDTOTAL-JSKS202002005.htm

    [63]

    TANG X, CHEN Y, LIU K, et al. Selective flotation separation of molybdenite and chalcopyrite by thermal pretreatment under air atmosphere[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2019, 583: 123958. doi: 10.1016/j.colsurfa.2019.123958

    [64]

    邓玉珍. 电化学处理及矿物浮选[J]. 国外金属矿选矿, 1996, 33(2): 35-39. https://www.cnki.com.cn/Article/CJFDTOTAL-JSXK199602007.htm

    DENG Y Z. Electrochemical treatment and mineral flotation[J]. Metallic Ore Dressing Abroad, 1996, 33(2): 35-39. https://www.cnki.com.cn/Article/CJFDTOTAL-JSXK199602007.htm

    [65]

    宋坤, 宋永胜, 张其东, 等. 外控电位法浮选分离黄铜矿和辉钼矿[J]. 工程科学学报, 2019, 41(7): 857-863. https://www.cnki.com.cn/Article/CJFDTOTAL-BJKD201907003.htm

    SONG K, SONG Y S, ZHANG Q D, et al. Flotation separation of chalcopyrite and molybdenite by externally controlled potential method[J]. Chinese Journal of Engineering, 2019, 41(7): 857-863. https://www.cnki.com.cn/Article/CJFDTOTAL-BJKD201907003.htm

  • 加载中

(9)

(1)

计量
  • 文章访问数:  2526
  • PDF下载数:  315
  • 施引文献:  0
出版历程
收稿日期:  2022-03-03
刊出日期:  2022-02-25

目录