Research Progress of Oxidation Pretreatment Technology in the Flotation Separation of Copper-molybdenum Sulphide Minerals
-
摘要:
黄铜矿和辉钼矿是两种典型的硫化矿, 其浮选分离一直是业界关注的焦点。硫化矿易氧化, 矿物表面氧化程度和氧化产物类型对其浮选行为有重要影响。黄铜矿、辉钼矿在浮选之前进行氧化预处理, 它们会产生不同程度的氧化和不同类型的氧化产物, 这些原因使矿物的表面原有的性质发生改变, 从而改变矿物固有的浮选行为, 实现黄铜矿和辉钼矿的浮选分离。论文介绍了黄铜矿、辉钼矿的表面特性, 分析了其表面氧化机理, 综述了铜钼硫化矿氧化浮选分离的研究现状, 旨在为铜钼硫化矿物绿色、高效浮选分离提供一定的借鉴。
Abstract:Chalcopyrite and molybdenite are two typical sulfide minerals, and their flotation separation has always been the focus of the industry. Sulfide minerals are easy to be oxidized, and the degree of mineral surface oxidation and the type of oxidation products have important influences on their flotation behavior. Chalcopyrite and molybdenite undergo oxidation pretreatment before flotation, which will produce different degrees of oxidation and different types of oxidation products. These reasons change the original properties of the mineral surface, so as to change the inherent flotation behavior of minerals and realize the flotation separation of chalcopyrite and molybdenite. This paper introduces the surface characteristics of chalcopyrite and molybdenite, analyzes their surface oxidation mechanism, and summarizes the research status of oxidative flotation separation of copper molybdenum sulfide minerals, in order to provide some reference for green and efficient flotation separation of copper-molybdenum sulfide minerals.
-
Key words:
- chalcopyrite /
- molybdenite /
- oxidation pretreatment /
- flotation /
- separation of copper-molybdenum /
- oxidation mechanism
-
-
图 2 辉钼矿的晶体结构[23]
Figure 2.
图 3 辉钼矿在10 mmol/L NaCl溶液中的表面和端面的表面电位[26]
Figure 3.
图 4 在缩合模型下有钝化层存在时黄铜矿浸出的离子变换过程[28]
Figure 4.
图 5 黄铜矿表面界面反应面模型[37]
Figure 5.
图 7 辉钼矿氧化示意图[42]
Figure 7.
图 9 黄铜矿和辉钼矿表面氧化机理示意图[54]
Figure 9.
表 1 常用的黄铜矿抑制剂
Table 1. Common chalcopyrite inhibitors
常用抑制剂 优点 缺点 硫化物 价格便宜,操作简单 用量大,污染环境 氰化物 用量小,效果好 有剧毒,污染环境 诺克斯 速度快,用量少 易爆炸,产生H2S 巯基乙酸钠 用量少,效果好 价格昂贵 -
[1] 贾红秀, 高丽梅, 姜威. 钼市场30年回顾与展望[J]. 中国钼业, 2006, 30(1): 42-47. doi: 10.3969/j.issn.1006-2602.2006.01.012
JIA H X, Gao L M, JIANG W. Review of the 30 year's molybdenumm market and itsprospect[J]. China Molybdenum Industry, 2006, 30(1): 42-47. doi: 10.3969/j.issn.1006-2602.2006.01.012
[2] LIU G Y, LU Y P, ZHONG H, et al. A novel approach for preferential flotation recovery of molybdenite from a porphyry copper-molybdenum ore[J]. Minerals Engineering, 2012, 36-38: 37-44. doi: 10.1016/j.mineng.2012.02.008
[3] 朱龙刚, 李宇宏. 铜钼分离研究现状与进展[J]. 矿山机械, 2015, 43(11): 16-20. https://www.cnki.com.cn/Article/CJFDTOTAL-KSJX201511004.htm
ZHU L G, LI Y H. Research status and progress of copper-molybdenum separation technology[J]. Mechanical Mining, 2015, 43(11): 16-20. https://www.cnki.com.cn/Article/CJFDTOTAL-KSJX201511004.htm
[4] 张村. 硫化铜钼矿的新型抑制剂及其机理研究[D]. 赣州: 江西理工大学, 2017.
ZHANG C. Research on the new Inhibitor of sulfide copper-molybdenum mine and its mechanism[D]. Ganzhou: Jiangxi University of Science and Technology, 2017.
[5] 赵镜, 张文钲, 王广文. 巯基乙酸钠抑制黄铜矿机理的研究[J]. 有色金属, 1988(3): 44-47. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXK198803011.htm
ZHAO J, ZHANG W Z, WANG G W. Study on the mechanism of sodium mercaptoacetate inhibiting chalcopyrite[J]. Nonferrous Metals, 1988(3): 44-47. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXK198803011.htm
[6] 吴康平, 余乐. 新型组合抑制剂在铜钼分离浮选中的应用[J]. 现代矿业, 2018, 34(1): 164-166. doi: 10.3969/j.issn.1674-6082.2018.01.031
WU K P, YU L. Application of novel combination inhibitor in copper-molybdenum separation flotation[J]. Modem Mining, 2018, 34(1): 164-166. doi: 10.3969/j.issn.1674-6082.2018.01.031
[7] 黄济存. 氮气在铜钼分选上的作用[J]. 有色矿山, 1994(1): 61-63. https://www.cnki.com.cn/Article/CJFDTOTAL-YSKS401.006.htm
HUANG J C. Effect of nitrogen on separation of copper and molybdenum [J]. Nonferrous Mines, 1994(1): 61-63. https://www.cnki.com.cn/Article/CJFDTOTAL-YSKS401.006.htm
[8] 刘磊, 吕良, 马瑛, 等. 含铜钼精矿超导磁分离试验研究[J]. 矿产保护与利用, 2017(1): 55-58. http://kcbh.cbpt.cnki.net/WKD/WebPublication/paperDigest.aspx?paperID=56a2ba85-56dc-4692-b76f-866e23362471
LIU L, LV L, MA Y, et al. Study on superconducting magnetic separation dealing with fine molybdenum concentrate containing copper[J]. Conservation and Utilization of Mineral Resources, 2017(1): 55-58. http://kcbh.cbpt.cnki.net/WKD/WebPublication/paperDigest.aspx?paperID=56a2ba85-56dc-4692-b76f-866e23362471
[9] 黄鹏亮, 杨丙桥, 胡杨甲, 等. 氧化预处理对铜钼浮选分离效果的影响[J]. 矿冶工程, 2021, 41(3): 46-56. doi: 10.3969/j.issn.0253-6099.2021.03.011
HUANG P L, YANG B Q, HU Y J, et al. Influence of oxidation pretreatment on chalcopyrite-molybdenite flotation separation efficiency[J]. Mining and Metallurgical Engineering, 2021, 41(3): 46-56. doi: 10.3969/j.issn.0253-6099.2021.03.011
[10] 张力先, 高玉武. 矿物表面特性与可浮性关系综述[J]. 黄金学报, 2000, 2(1): 30-33. https://www.cnki.com.cn/Article/CJFDTOTAL-HUJI200001007.htm
ZHANG L X, GAO Y W. Summarization of relation between surface properties and float-ability of minerals[J]. Gold Journal, 2000, 2(1): 30-33. https://www.cnki.com.cn/Article/CJFDTOTAL-HUJI200001007.htm
[11] 肖策环. 微细粒黄铜矿表面特性与可浮性关系研究[D]. 赣州: 江西理工大学, 2016.
XIAO C H. The study on the relationship between the surface characteristics and flotability of micro fine chalcopyrite[D]. Ganzhou: Jiangxi University of Science and Technology, 2016.
[12] 吕建业, 沈耀平, 张洪恩. 辉钼矿表面特性及其可浮性的研究[J]. 有色金属, 1992(4): 4-8. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXK199204001.htm
LV J P, SHEN Y P, ZHANG H E. Study of surface properties of pyromorphite and its floatability[J]. Nonferrous Metals: Mineral Processing Section, 1992(4): 4-8. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXK199204001.htm
[13] 尚新华. 氧化对黄铜矿无捕收剂浮选的影响[J]. 现代矿业, 1998(1): 12-17. https://www.cnki.com.cn/Article/CJFDTOTAL-KYKB199801001.htm
SHANG X H. Effects of surface oxidation on sulphide mineral flotation[J]. Modern mining, 1988(1): 12-17. https://www.cnki.com.cn/Article/CJFDTOTAL-KYKB199801001.htm
[14] 柯家骏. 辉钼矿晶面特性工艺矿物学的研究[J]. 化工冶金, 1981(4): 37-43. https://www.cnki.com.cn/Article/CJFDTOTAL-HGYJ198104003.htm
HE J J. Study of the process mineralogy of the crystalline surface properties of pyromorphite[J]. Chemical Metallurgy, 1981(4): 37-43. https://www.cnki.com.cn/Article/CJFDTOTAL-HGYJ198104003.htm
[15] 吕建业. 辉钼矿的表面特性及其浮选行为的研究[D]. 沈阳: 东北大学, 1989.
LV J Y. Study of surface properties of pyromorphite and its flotation behavior[D]. Shenyang: Northeastern University, 1989.
[16] HUAI Y, PLACKOWSKI C, PENG Y. The surface properties of pyrite coupled with gold in the presence of oxygen[J]. Minerals Engineering, 2017, 111: 131-139. doi: 10.1016/j.mineng.2017.06.013
[17] RAO M Y, NATARAJAN K A. Influence of galvanic interaction between chalcopyrite and some metallic materials on flotation[J]. Minerals Engineering, 1988, 1(4): 281-294. doi: 10.1016/0892-6875(88)90018-0
[18] 聂庆民. 黄铜矿表面性质及CN-在其表面吸附的密度泛函理论研究[D]. 赣州: 江西理工大学, 2017.
NIE Q M. Density Functional Theory study on the surface properties of chalcopyrite and the adsorption of CN-on its surface[D]. Ganzhou: Jiangxi University of Science and Technology, 2017.
[19] 牛晓鹏. 方铅矿, 黄铜矿和黄铁矿表面氧化与可浮性研究[D]. 北京: 中国科学院大学, 2019.
NIU X P. Correlation of surface oxidation of galena, chalcopyrite and pyrite with their floatability[D]. Beijing: University of Chinese Academy of Sciences, 2019.
[20] YANG Y. The effect of microorganisms on the surface properties of chalcopyrite[D]. Adelaide: Flinders University, 2014.
[21] 邓久帅. 黄铜矿流体包裹体组分释放及其与弛豫表面的相互作用[D]. 昆明: 昆明理工大学, 2013.
DENG J S. Release of chalcopyrite fluid inclusion components and their interactions with relaxation surfaces [D]. Kunming: Kunming University of Science and Technology, 2013.
[22] CASTRO S, LOPEZ-VALDIVIESO A, LASKOWSKI J S. Review of the flotation of molybdenite. Part I: Surface properties and floatability[J]. International Journal of Mineral Processing, 2016, 148: 48-58.
[23] 李万青. 海水浮选辉钼矿作用机理研究[D]. 武汉: 武汉理工大学, 2019.
LI W Q. The fundamental mechanisms of seawater on the flotation of molybdenite [D]. Wuhan: Wuhan University of Technology, 2019.
[24] 魏桢伦, 李育彪. 辉钼矿晶面各向异性及其对浮选的影响机制[J]. 矿产保护与利用, 2018(3): 31-36. http://kcbh.cbpt.cnki.net/WKD/WebPublication/paperDigest.aspx?paperID=1ee5dc34-c77c-489c-a973-3cc6879a6802
WEI Z L, LI Y B. Anisotropy of molybdenite surface and its effects on flotation mechanism[J]. Conservation and Utilization of Mineral Resources, 2018(3) : 31-36. http://kcbh.cbpt.cnki.net/WKD/WebPublication/paperDigest.aspx?paperID=1ee5dc34-c77c-489c-a973-3cc6879a6802
[25] 谢小燕, 邱显扬, 罗传胜, 等. 辉钼矿可浮选性及其捕收剂的研究进展[J]. 中国钼业, 2013, 37(5): 29-32. doi: 10.3969/j.issn.1006-2602.2013.05.006
XIE X Y, QIU X Y, LOU C S, et al. Research progress on floatbility of molybdenite and its collectors[J]. China Molybdenum Industry, 2013, 37(5): 29-32. doi: 10.3969/j.issn.1006-2602.2013.05.006
[26] LU Z, LIU Q, XU Z, et al. Probing anisotropic surface properties of molybdenite by direct force measurements[J]. Langmuir the Acs Journal of Surfaces & Colloids, 2015, 31(42): 11409-11418.
[27] 赵晋宁. 酸性条件下黄铜矿氧化钝化过程的电化学研究[D]. 广州: 华南理工大学, 2013.
ZHAO J N. Electrochemical study of the chalcopyrite oxidation and passivation in the acid mediums[D]. Guangzhou: South China University of Technology, 2013.
[28] 蔡长江. 黄铜矿的氧化及其钝化研究[D]. 广州: 华南理工大学, 2014.
CAI C J. The oxidation and passivation of chalcopyrite[D]. Guangzhou: South China University of Technology, 2014.
[29] GUO H. Electrochemistry and flotation of enargite and chalcopyrite[D]. Kingston: Queen's University at Kingston, 2004.
[30] PRICE DW, WARREN GW. The influence of silver ion on the electrochemical response of chalcopyrite and other mineral sulfide electrodes in sulfuric acid[J]. Hydrometallurgy, 1986, 15(3): 303-324. doi: 10.1016/0304-386X(86)90063-0
[31] WARREN GW, SOHN HJ, WADSWORTH ME, et al. The effect of electrolyte composition on the cathodic reduction of CuFeS2[J]. Hydrometallurgy, 1985, 14(2): 133-149. doi: 10.1016/0304-386X(85)90030-1
[32] 何卓起, 俞瑞, 贺政, 等. 硫化矿浮选外加电场预处理理论基础的探讨[J]. 有色金属, 1998(4): 46-50. https://www.cnki.com.cn/Article/CJFDTOTAL-YOUS199804008.htm
HE Z Q, YU R, HE Z, et al. Theoretical basls of external electrical fleld pretreatment for sulflde flotation[J]. Nonferrous Metals, 1998(4): 46-50. https://www.cnki.com.cn/Article/CJFDTOTAL-YOUS199804008.htm
[33] BIEGLER T, SWIFT D A. Anodic electrochemistry of chalcopyrite[J]. Journal of Applied Electrochemistry, 1979, 9(5): 545-554. doi: 10.1007/BF00610940
[34] AN, BUCKLEY, WOODS. An X-ray photoelectron spectroscopic study of the oxidation of chalcopyrite[J]. Australian Journal of Chemistry, 1984, 37(12): 2403-2413. doi: 10.1071/CH9842403
[35] HIROYOSHI N, HIROTA M, HIRAJIMA T, et al. A case of ferrous sulfate addition enhancing chalcopyrite leaching[J]. Hydrometallurgy, 1997, 47(1): 37-45. doi: 10.1016/S0304-386X(97)00032-7
[36] HARMER SL, THOMAS JE, FORNASIERO D, et al. The evolution of surface layers formed during chalcopyrite leaching[J]. Geochimica Et Cosmochimica Acta, 2006, 70(17): 4392-4402. doi: 10.1016/j.gca.2006.06.1555
[37] HUA XM, ZHENG YF, XU Q, et al. Interfacial reactions of chalcopyrite in ammonia-ammonium chloride solution[J]. Transactions of Nonferrous Metals Society of China, 2018, 28(3): 556-566. doi: 10.1016/S1003-6326(18)64688-6
[38] CHANDER S, FUERSTENAU D W. On the naturalfloatability of molybdenite[J]. AIME, 1972, 252: 62-69.
[39] WANG J, XIE L, LU Q, et al. Electrochemical investigation of the interactions of organic and inorganic depressants on basal and edge planes of molybdenite[J]. Journal of Colloid and Interface Science, 2020, 570(3).
[40] CHANDER S, FUERSTENAU DW. Electrochemical flotation separation of chalcocite from molybdenite[J]. International Journal of Mineral Processing, 1983, 10(2): 89-94. doi: 10.1016/0301-7516(83)90035-2
[41] MIKI H M H, HIRAJIMA T, SUYANTARA GPW, SASAKI K. Electrolysis oxidation of chalcopyrite and molybdenite for selective flotation[J]. Materials Transactions, 2017, 58(5): 761-767. doi: 10.2320/matertrans.M-M2017807
[42] LI Y, CLEMENT L, SONG S, et al. The fundamental roles of monovalent and divalent cations with sulfates on molybdenite flotation in the absence of flotation reagents[J]. RSC Advances, 2018, 8(41): 23364-23371. doi: 10.1039/C8RA02690D
[43] 李晖. 硫化矿物的浮选电化学和浮选行为探析[J]. 石化技术, 2016, 23(3): 82. doi: 10.3969/j.issn.1006-0235.2016.03.066
LI H. Flotation electrochemistry and flotation behavior of sulfide ineral[J]. Petrochemical Technology, 2016, 23(3): 82. doi: 10.3969/j.issn.1006-0235.2016.03.066
[44] HARADA T, KUNIYOSHI N. Effects of surface oxidation on sulphide mineral flotation[J]. Flotation, 1984, 31(1): 55-66. doi: 10.4144/rpsj1954.31.55
[45] LUTTRELL G H, YOON R H. The collectorless flotation of chalcopyrite ores using sodium sulfide[J]. International Journal of Mineral Processing, 1984, 13(4): 271-283. doi: 10.1016/0301-7516(84)90048-6
[46] FAIRTHORNE G, FORNASIERO D, RALSTON J. Effect of oxidation on the collectorless flotation of chalcopyrite[J]. International Journal of Mineral Processing, 1997, 49(1/2): 31-48.
[47] ZHENLUN W, YUBIAO L, LINGYUN H. New insight into the anisotropic property and wettability of molybdenite: A DFT study[J]. Minerals Engineering, 2021, 170: 107058. doi: 10.1016/j.mineng.2021.107058
[48] XIE L, WANG J, HUANG J, et al. Anisotropic polymer adsorption on molybdenite basal and edge surfaces and interaction mechanism with air bubbles[J]. Frontiers in chemistry, 2018: 361.
[49] LI Y, YANG X, FU J, et al. New insights into the beneficial roles of dispersants in reducing negative influence of Mg2+ on molybdenite flotation[J]. RSC Advances, 2020, 10(46): 27401-27406. doi: 10.1039/D0RA05556E
[50] HE T, HUI L, JIN J, et al. Improving fine molybdenite flotation using a combination of aliphatic hydrocarbon oil and polycyclic aromatic hydrocarbon[J]. Results in Physics, 2019, 12: 1050-1055. doi: 10.1016/j.rinp.2018.12.010
[51] HONG G, JUNHYUN C, HAN Y, et al. Relationship between surface characteristics and floatability in representative sulfide minerals: Role of surface oxidation[J]. Materials transactions, 2017, 58(7): 1069-1075. doi: 10.2320/matertrans.M2017014
[52] HIRAJIMA T, MIKI H, SUYANTARA G, et al. Selective flotation of chalcopyrite and molybdenite with H2O2 oxidation[J]. Minerals Engineering, 2017, 100: 83-92. doi: 10.1016/j.mineng.2016.10.007
[53] HUANG H H, LU M C, CHEN J N. Catalytic decomposition of hydrogen peroxide and 2-chlorophenol with iron oxides[J]. Water Research, 2001, 35(9): 2291-2299. doi: 10.1016/S0043-1354(00)00496-6
[54] WISNU S, TSUYOSHI H, HAJIME M, et al. effect of fenton-like oxidation reagent on hydrophobicity and floatability of chalcopyrite and molybdenite[J]. Colloids & Surfaces A Physicochemical & Engineering Aspects, 2018, 554: 34-48.
[55] SHARMA V K. Potassium ferrate(Ⅵ): an environmentally friendly oxidant[J]. Advances in Environmental Research, 2002, 6(2): 143-156. doi: 10.1016/S1093-0191(01)00119-8
[56] LIAO R, FENG Q, WEN S, et al. Flotation separation of molybdenite from chalcopyrite using ferrate(Ⅵ) as selective depressant in the absence of a collector[J]. Minerals Engineering, 2020, 152: 106369. doi: 10.1016/j.mineng.2020.106369
[57] GUO H, JIANG N, WANG H, et al. Pulsed discharge plasma induced WO3 catalysis for synergetic degradation of ciprofloxacin in water: Synergetic mechanism and degradation pathway[J]. Chemosphere, 2019, 230: 190. doi: 10.1016/j.chemosphere.2019.05.011
[58] HAO Z, MA D, QIU R, et al. Non-thermal plasma technology for organic contaminated soil remediation: A review[J]. Chemical Engineering Journal, 2016, 313: 157-170.
[59] HIRAJIMA T, MORI M, ICHIKAWA O, et al. Selective flotation of chalcopyrite and molybdenite with plasma pre-treatment[J]. Minerals Engineering, 2014, 66: 102-111.
[60] GREENLEE L F, LAWLER D F, FREEMAN B D, et al. Reverse osmosis desalination: water sources, technology, and today's challenges[J]. Water Research, 2009, 43(9): 2317-2348.
[61] 傅佳丽, 李育彪, 王洪铎, 等. 浸泡预处理对铜钼硫化矿浮选分离的影响机理[J]. 金属矿山, 2020, 49(2): 29-32.
FU J L, LI Y B, WANG H Z, et al. Mechanisms of soaking pre-treatment on flotation separation of copper-molybdenum sulfide Ore[J]. Metal Mine, 2020, 49(2): 29-32.
[62] 王志杰, 李育彪, 王洪铎, 等. 微波预处理对铜钼硫化矿海水浮选的影响机理[J]. 金属矿山, 2020, 49(2): 19-23. https://www.cnki.com.cn/Article/CJFDTOTAL-JSKS202002005.htm
WANG Z J, LI Y B, WANG H Z, et al. Effect of microwave pretreatment on cu-mo Sulfide mineral flotation in sea water[J]. Metal Mine, 2020, 49(2): 19-23. https://www.cnki.com.cn/Article/CJFDTOTAL-JSKS202002005.htm
[63] TANG X, CHEN Y, LIU K, et al. Selective flotation separation of molybdenite and chalcopyrite by thermal pretreatment under air atmosphere[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2019, 583: 123958. doi: 10.1016/j.colsurfa.2019.123958
[64] 邓玉珍. 电化学处理及矿物浮选[J]. 国外金属矿选矿, 1996, 33(2): 35-39. https://www.cnki.com.cn/Article/CJFDTOTAL-JSXK199602007.htm
DENG Y Z. Electrochemical treatment and mineral flotation[J]. Metallic Ore Dressing Abroad, 1996, 33(2): 35-39. https://www.cnki.com.cn/Article/CJFDTOTAL-JSXK199602007.htm
[65] 宋坤, 宋永胜, 张其东, 等. 外控电位法浮选分离黄铜矿和辉钼矿[J]. 工程科学学报, 2019, 41(7): 857-863. https://www.cnki.com.cn/Article/CJFDTOTAL-BJKD201907003.htm
SONG K, SONG Y S, ZHANG Q D, et al. Flotation separation of chalcopyrite and molybdenite by externally controlled potential method[J]. Chinese Journal of Engineering, 2019, 41(7): 857-863. https://www.cnki.com.cn/Article/CJFDTOTAL-BJKD201907003.htm
-