复合捕收剂与组合抑制剂对微细粒独居石与萤石浮选分离的作用机理研究

吴旭, 张艳清, 曹钊. 复合捕收剂与组合抑制剂对微细粒独居石与萤石浮选分离的作用机理研究[J]. 矿产保护与利用, 2022, 42(3): 1-7. doi: 10.13779/j.cnki.issn1001-0076.2022.03.001
引用本文: 吴旭, 张艳清, 曹钊. 复合捕收剂与组合抑制剂对微细粒独居石与萤石浮选分离的作用机理研究[J]. 矿产保护与利用, 2022, 42(3): 1-7. doi: 10.13779/j.cnki.issn1001-0076.2022.03.001
WU Xu, ZHANG Yanqing, CAO Zhao. Study on Mechanism of Composite Collectors and Combined Inhibitors in Flotation Separation Experiments of Micro-fine Monaziteand Fluorite[J]. Conservation and Utilization of Mineral Resources, 2022, 42(3): 1-7. doi: 10.13779/j.cnki.issn1001-0076.2022.03.001
Citation: WU Xu, ZHANG Yanqing, CAO Zhao. Study on Mechanism of Composite Collectors and Combined Inhibitors in Flotation Separation Experiments of Micro-fine Monaziteand Fluorite[J]. Conservation and Utilization of Mineral Resources, 2022, 42(3): 1-7. doi: 10.13779/j.cnki.issn1001-0076.2022.03.001

复合捕收剂与组合抑制剂对微细粒独居石与萤石浮选分离的作用机理研究

  • 基金项目:
    国家重点研发计划(2021YFC2901000);国家自然科学基金(51764045);矿物加工科学与技术国家重点实验室开放基金(BGRIMM-KJSKL-2020-23);内蒙古自然科学基金(2019MS05039)
详细信息
    作者简介: 吴旭(1990-),男,博士研究生,主要从事复杂多金属矿分选,E-mail: wx013416@163.com
    通讯作者: 曹钊(19985-),男,博士,教授,博士生导师,主要从事复杂多金属矿选矿工艺和理论研究,E-mail: caozhao1217@163.com
  • 中图分类号: TD923+.1;TD955

Study on Mechanism of Composite Collectors and Combined Inhibitors in Flotation Separation Experiments of Micro-fine Monaziteand Fluorite

More Information
  • 为提高微细粒(-15 μm)独居石和萤石的浮选分离效果, 通过浮选试验、XPS测试和显微聚团分析, 对组合抑制剂水玻璃+乙二胺四乙酸(EDTA)和复合捕收剂辛基羟肟酸(OHA)+辛基酚聚氧乙烯醚(OP)在独居石和萤石浮选分离试验中的应用效果和作用机理进行了分析。结果表明, 针对-15 μm独居石和萤石质量比1 GA6FA 1的人工混合矿, 联合使用组合抑制剂和复合捕收剂, 可以得到独居石回收率80%、萤石回收率24.4%的浮选精矿, 相比于仅使用单一抑制剂或单一捕收剂时, 独居石的浮选回收率及独居石与萤石的浮选分离效果明显提高; EDTA能够络合清除独居石表面的Ca2+离子, 提高抑制剂对萤石的选择性抑制作用; OP和OHA可以协同吸附在独居石表面, 促使微细粒独居石疏水聚团, 从而提高其浮选回收。

  • 加载中
  • 图 1  独居石(a)与萤石(b)的XRD图谱

    Figure 1. 

    图 2  溶液pH值(a)和OHA用量(b)对-15 μm独居石与萤石可浮性的影响

    Figure 2. 

    图 3  Ca2+离子浓度(a)和水玻璃用量(b)对独居石可浮性的影响

    Figure 3. 

    图 4  EDTA用量对独居石可浮性的影响

    Figure 4. 

    图 5  捕收剂用量对独居石可浮性的影响

    Figure 5. 

    图 6  不同捕收剂条件下,水玻璃用量对微细粒独居石与萤石浮选分离效果的影响

    Figure 6. 

    图 7  组合抑制剂中EDTA用量对独居石和萤石浮选分离效果的影响

    Figure 7. 

    图 8  独居石处理前后表面的Si 2p XPS能谱

    Figure 8. 

    图 9  经OHA和OP单独或联合处理前后独居石颗粒的聚团现象

    Figure 9. 

    表 1  经Ca2+、EDTA及水玻璃单独或联合处理前后独居石表面相对原子浓度

    Table 1.  Atomic concentration for elements on monazite surfaces in the absence and presence of Ca2+、EDTA and sodium silicate individually or in combination  /%

    样品 相对原子浓度
    Ce La C O P Th Ca Si
    独居石 4.19 1.75 35.35 48.42 9.56 0.73 - -
    独居石+水玻璃 2.64 1.7 33.51 51.64 7.48 0.8 - 2.23
    独居石+Ca2+ +水玻璃 2.04 1.26 38 45.01 7.31 0.7 1.73 3.95
    独居石+Ca2++ EDTA+水玻璃 2.38 1.2 34.59 52.48 7.44 0.86 - 1.05
    下载: 导出CSV
  • [1]

    杨斌清, 张贤平. 世界稀土生产与消费结构分析[J]. 稀土, 2014, 5(1): 110-118. https://www.cnki.com.cn/Article/CJFDTOTAL-XTZZ201401029.htm

    YANG B Q, ZHANG X P. Analysis of global rare earth production and consumption structure[J]. Chinese Rare Earths, 2014, 5(1): 110-118. https://www.cnki.com.cn/Article/CJFDTOTAL-XTZZ201401029.htm

    [2]

    BINNEMANS K, JONES P T, BLANPAIN B, et al. Recycling of rare earths: a critical review[J]. Journal of Cleaner Production, 2013, 51: 1-22. doi: 10.1016/j.jclepro.2012.12.037

    [3]

    JORDENS A, CHENG Y P, WATERS K E. A review of the beneficiation of rare earth element bearing minerals[J]. Minerals Engineering, 2013, 41: 97-114. doi: 10.1016/j.mineng.2012.10.017

    [4]

    郑强. 综合回收白云鄂博弱磁尾矿中铁, 稀土, 氟和磷的研究[D]. 沈阳: 东北大学, 2017.

    ZHENG Q. Studies on comprehensive recovery of iron, rare earth, fluorine and phosphorus from Bayan Obo weakly magnetic tailings[D]. Shenyang: Northeastern University, 2017.

    [5]

    程建忠, 侯运炳, 车丽萍. 白云鄂博矿床稀土资源的合理开发及综合利用[J]. 稀土, 2007, 28(1): 70-74. doi: 10.3969/j.issn.1004-0277.2007.01.019

    CHENG J Z, HOU Y B, CHE L P. Making rational multipurpose use of resources of RE in Bayan Obo deposit[J]. Chinese Rare Earths, 2007, 28(1): 70-74. doi: 10.3969/j.issn.1004-0277.2007.01.019

    [6]

    王维维, 李二斗, 王其伟, 等. 白云鄂博微细粒稀土矿工艺矿物学及浮选实验研究[J]. 矿产综合利用, 2021(5): 81-85. doi: 10.3969/j.issn.1000-6532.2021.05.012

    WANG W W, LI E D, WANG Q W, et al. Study on process mineralogy and flotation test of the Bayan Obo fine grained rare earth ore[J]. Multipurpose Utilization of Mineral Resources, 2021(5): 81-85. doi: 10.3969/j.issn.1000-6532.2021.05.012

    [7]

    ESPIRITU E, DA S G, AZIZI D, et al. Flotation behavior and electronic simulations of rare earth minerals in the presence of dolomite supernatant using sodium oleate collector[J]. Journal of Rare Earths, 2019, 37(1): 101-112. doi: 10.1016/j.jre.2018.04.016

    [8]

    肖赫, 李梅, 李光柱, 等. 白云鄂博萤石矿脉带颗粒赋存研究[J]. 中国稀土学报, 2021, 39(2): 310-316. https://www.cnki.com.cn/Article/CJFDTOTAL-XTXB202102014.htm

    XIAO H, LI M, LI G Z, et al. Occurrence of particles in Bayan Obo fluorite vein belt[J]. Journal of Chinese Rare Earths, 2021, 39(2): 310-316. https://www.cnki.com.cn/Article/CJFDTOTAL-XTXB202102014.htm

    [9]

    车丽萍, 余永富. 我国稀土矿选矿生产现状及选矿技术发展[J]. 稀土, 2006, 27(1): 95-102. https://www.cnki.com.cn/Article/CJFDTOTAL-XTZZ200601027.htm

    CHE L P, YU Y F. Development progress and research connotation of green chemistry of extraction process of rare earth from weathering crust elution-deposited rare[J]. Chinese Rare Earths, 2006, 27(1): 95-102. https://www.cnki.com.cn/Article/CJFDTOTAL-XTZZ200601027.htm

    [10]

    ZHANG W, HONAKER R Q. Flotation of monazite in the presence of calcite part Ⅱ: enhanced separation performance using sodium silicate and EDTA[J]. Minerals Engineering, 2018.

    [11]

    ZHANG C, GAO Z, HU Y, et al. The effect of polyacrylic acid on the surface properties of calcite and fluorite aiming at their selective flotation[J]. Physicochemical Problems of Mineral Processing, 2018, 54(3): 868-877.

    [12]

    LI H, LIU M, LIU Q. The effect of non-polar oil on fine hematite flocculation and flotation using sodium oleate or hydroxamic acids as a collector[J]. Minerals Engineering, 2018, 119: 105-115.

    [13]

    LIU A, FAN M Q, FAN P P. Interaction mechanism of miscible DDA-Kerosene and fine quartz and its effect on the reverse flotation of magnetic separation concentrate[J]. Minerals Engineering, 2014, 65: 41-50.

    [14]

    SIS H, CHANDER S. Improving froth characteristics and flotation recovery of phosphate ores with nonionic surfactants[J]. Minerals Engineering, 2003, 16(7): 587-595.

    [15]

    CAO Z, CHENG Z, WANG J, et al. Synergistic depression mechanism of Ca2+ ions and sodium silicate on bastnaesite flotation[J]. Journal of Rare Earths, 2022, 40(6): 988-995.

    [16]

    王介良, 曹钊, 李解, 等. 包钢稀土选矿厂稀土浮选药剂优化[J]. 金属矿山, 2013(11): 74-80. https://www.cnki.com.cn/Article/CJFDTOTAL-JSKS201311022.htm

    WANG J L, CAO Z, LI J, et al. Optimization of floatation reagents for rare earth ore in dressing plant of Bayan Obo rare earth ore[J]. Metal Mine, 2013(11): 74-80. https://www.cnki.com.cn/Article/CJFDTOTAL-JSKS201311022.htm

    [17]

    CAO Z, CAO Y, QU Q, et al. Separation of bastnsite from fluorite using ethylenediaminetetraacetic acid as depressant[J]. Minerals Engineering, 2019, 134: 134-141.

    [18]

    王介良, 迈倩琳, 程泽宇, 等. 水玻璃和EDTA对氟碳铈矿与萤石浮选分离作用对比试验研究[J]. 有色金属(选矿部分), 2021(6): 181-188. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXK202106024.htm

    WANG J L, MAI Q L, CHENG Z Y, et al. Experimental study on the effect of water glass and EDTA on the flotation separation of bastnaesite and fluorite[J]. Nonferrous Metals (Mineral Processing Section), 2021(6): 181-188. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXK202106024.htm

  • 加载中

(9)

(1)

计量
  • 文章访问数:  1900
  • PDF下载数:  93
  • 施引文献:  0
出版历程
收稿日期:  2022-06-16
刊出日期:  2022-06-25

目录