Study on Comprehensive Recovery of Lithium Mica and Feldspar from Low Grade Lepidolite Ore in Yifeng of Jiangxi
-
摘要:
江西宜丰地区锂云母矿风化严重、矿物赋存形式复杂, 锂云母中Li2O理论品位较低, 为实现该锂云母矿中锂云母和长石的高效回收, 开展了详细的选矿试验研究。研究结果表明, 采用脱泥—浮选—磁选工艺, 首先对原矿进行脱泥, 降低了微细粒脉石矿物在锂云母矿物表面的罩盖, 然后以高选择性捕收剂ZY浮选锂云母, 实现了锂云母与脉石矿物的有效分离, 最终获得含Li2O 1.73%、回收率75.87%的锂云母精矿; 浮选尾矿经磁场强度为1.5 T的高梯度磁选除铁后, 可获得作业产率为94.31%、含Na2O 5.78%、K2O 3.08%、Fe2O3 0.07%、白度为67.21%的长石精矿, 可作为陶瓷原料使用。该工艺处理锂云母矿获得了良好的选矿指标, 实现了锂云母及长石的综合回收。
Abstract:The lepidolite ore in Yifeng area of Jiangxi Province is seriously weathered and the occurrence form of minerals is complex. The theoretical grade of Li2O in lepidolite is low. In order to realize the efficient recovery of lithium and feldspar from the lepidolite ore, the detail beneficiation test research was carried out. The results showed that the process of desliming-flotation-magnetic separation was adopted. First, the raw ore was deslimed to reduce the cover of fine gangue minerals on the surface of lithium mica. Then, the flotation of lithium mica with highly selective collector ZY could effectively separate lepidolite from gangue minerals. The lepidolite concentrate with Li2O content of 1.73% and recovery rate of 75.87% was obtained. After iron removal from flotation tailings by high gradient magnetic separation with magnetic field intensity of 1.5 T, the feldspar concentrate with operation yield of 94.31%, Na2O 5.78%, K2O 3.08%, Fe2O3 0.07% and whiteness of 67.21% could be obtained and used as ceramic material. The process had achieved good beneficiation indexes for the treatment of lepidolite ore, and realized the comprehensive recovery of lepidolite and feldspar.
-
Key words:
- lepidolite /
- feldspar /
- collector /
- comprehensive recovery /
- flotation /
- magnetic separation
-
-
表 1 原矿试样多元素分析结果
Table 1. Multi element analysis results of raw ore samples
/% 成分 SiO2 Al2O3 K2O Na2O CaO MgO Fe2O3 MnO 含量 69.25 17.65 4.42 4.89 0.65 0.06 1.13 0.22 成分 Li2O Rb2O Cs2O BeO Nb2O5 Ta2O5 TiO2 P2O5 含量 0.31 0.16 0.04 0.025 0.007 0.003 0.02 0.56 表 2 原矿矿物组成分析结果
Table 2. The mineral composition of raw ore
/% 矿物名称 钠长石 石英 云母 磷灰石 白榴石 黄玉 高岭石 其他 含量 44.55 39.26 14.39 0.45 0.26 0.15 0.10 0.14 表 3 捕收剂种类试验结果
Table 3. Test results of collector types
/% 捕收种类 产率 Li2O品位 Li2O回收率 十二胺 16.75 1.35 74.56 十八胺 17.45 1.31 73.74 椰油胺 15.89 1.43 73.30 ZY 14.86 1.58 75.74 表 4 锂云母浮选闭路流程试验结果
Table 4. Test results of lithium mica flotation closed circuit process
/% 产品名称 产率 Li2O品位 Li2O回收率 细泥 17.89 0.26 15.00 锂云母精矿 13.13 1.73 75.87 尾矿 68.98 0.05 9.13 原矿 100.00 0.31 100.00 表 5 高梯度磁选作业段数试验结果
Table 5. Test results of high gradient magnetic separation operation sections
/% 高梯度磁选作业段数 产品名称 作业产率 Fe2O3品位 Fe2O3分布率 一段强磁选(1.5 T) 磁性矿物 5.77 9.61 89.52 长石粉 94.23 0.07 10.48 浮选尾矿 100.00 0.63 100.00 两段强磁选(1.3 T+1.5 T) 磁性矿物 8.39 6.85 91.22 长石粉 91.61 0.06 8.78 浮选尾矿 100.00 0.63 100.00 表 6 长石磁选除杂试验结果
Table 6. Test results of feldspar magnetic separation
/% 产品名称 作业产率 Fe2O3品位 K2O品位 Na2O品位 白度 磁性矿物 5.69 9.91 2.47 1.89 / 长石粉 94.31 0.07 3.08 5.78 67.21 浮选尾矿 100.00 0.63 3.05 5.59 / -
[1] 李少平, 张俊敏, 迪里努尔·阿不都卡得, 等. 锂云母浮选捕收剂研究现状及展望[J]. 矿产保护与利用, 2020, 40(6): 77-82. http://kcbh.cbpt.cnki.net/WKD/WebPublication/paperDigest.aspx?paperID=46a963cd-cee8-4d0c-995d-9822e7fb1b93
LI S P, ZHANG J M, DILINUER A, et al. Research status and prospect of lepidolite flotation collectors[J]. Conservation and Utilization of Mineral Resources, 2020, 40(6) : 77-82. http://kcbh.cbpt.cnki.net/WKD/WebPublication/paperDigest.aspx?paperID=46a963cd-cee8-4d0c-995d-9822e7fb1b93
[2] 李承元, 李勤, 朱景和. 世界锂资源的开发应用现状及展望[J]. 国外金属矿选矿, 2001(8): 22-26. https://www.cnki.com.cn/Article/CJFDTOTAL-JSXK200108003.htm
LI C Y, LI Q, ZHU J H. Development and application status and prospect of lithium resources in the world[J]. Metallic Ore Dressing Abroad, 2001(8): 22-26. https://www.cnki.com.cn/Article/CJFDTOTAL-JSXK200108003.htm
[3] HANNA V, SIMON D, MIKAEL H. Lithium availability and future production outlooks[J]. Applied Energy, 2013, 110(110): 252-266.
[4] 吕子虎, 赵登魁, 沙惠雨, 等. 阴阳离子组合捕收剂浮选锂云母的试验研究[J]. 矿产保护与利用, 2017(2): 81-84. http://kcbh.cbpt.cnki.net/WKD/WebPublication/paperDigest.aspx?paperID=2d98af83-8e4c-48ba-aef9-bf45bc9d50f5
LV Z H, ZHAO D K, SHA H Y, et al. Experimental study on flotation of lepidolite with cation anion combined collector[J]. Conservation and Utilization of Mineral Resources, 2017(2): 81-84. http://kcbh.cbpt.cnki.net/WKD/WebPublication/paperDigest.aspx?paperID=2d98af83-8e4c-48ba-aef9-bf45bc9d50f5
[5] LI J, HUANG X L, HE P L, et al. In situ analyses of micas in the Yashan granite, south China: constraints onmagmatic and hydrothermal evolutions of W and Ta-Nb bearing granites[J]. Ore Geology Reviews, 2015, 65: 793-810. doi: 10.1016/j.oregeorev.2014.09.028
[6] JAERYEONG L. Extraction of lithium from lepidolite using mixed grinding with sodium sulfide followed by water leaching[J]. Minerals, 2015, 5(4): 737-743. doi: 10.3390/min5040521
[7] THI T, VAN T, RETO G, et al. Extraction of lithium from lepidolite via iron sulphide roasting and water leaching[J]. Hydrometallurgy, 2015, 153: 154-159. doi: 10.1016/j.hydromet.2015.03.002
[8] 刘丽君, 王登红, 刘喜方, 等. 国内外锂矿主要类型、分布特点及勘查开发现状[J]. 中国地质, 2017, 44(2): 263-278. https://www.cnki.com.cn/Article/CJFDTOTAL-DIZI201702005.htm
LIU L J, WANG D H, LIU X F, et al. Main types, distribution characteristics and exploration and development status of lithium deposits at home and abroad[J]. Geology in China, 2017, 44(2): 263-278. https://www.cnki.com.cn/Article/CJFDTOTAL-DIZI201702005.htm
[9] 朱文龙, 黄万抚. 国内外锂矿物资源概况及其选矿工艺综述[J]. 现代矿业, 2010, 26(7): 1-4. doi: 10.3969/j.issn.1674-6082.2010.07.001
ZHU W L, HUANG W F. Overview of lithium mineral resources at home and abroad and its beneficiation process[J]. Modern Mining, 2010, 26(7): 1-4. doi: 10.3969/j.issn.1674-6082.2010.07.001
[10] 方霖, 郭珍旭, 刘长淼, 等. 云母矿物浮选研究进展[J]. 中国矿业, 2015, 24(3): 131-136. doi: 10.3969/j.issn.1004-4051.2015.03.029
FANG L, GUO Z X, LIU C M, et al. Research progress of mica mineral flotation[J]. China Mining, 2015, 24(3): 131-136. doi: 10.3969/j.issn.1004-4051.2015.03.029
[11] 岳紫龙, 李宏建, 周亚飞. 江西某钽铌矿浮选药剂调整研究[J]. 中国矿山工程, 2006, 35(5): 7-9. https://www.cnki.com.cn/Article/CJFDTOTAL-YSKS200605006.htm
YUE Z L, LI H J, ZHOU Y F. Study on flotation reagent adjustment of a tantalum niobium ore in Jiangxi[J]. China Mining Engineering, 2006, 35(5): 7-9. https://www.cnki.com.cn/Article/CJFDTOTAL-YSKS200605006.htm
[12] 何桂春, 冯金妮, 毛美心, 等. 组合捕收剂在锂云母浮选中的应用研究[J]. 非金属矿, 2013(4): 29-31. https://www.cnki.com.cn/Article/CJFDTOTAL-FJSK201304009.htm
HE G C, FENG J N, MAO M X, et al. Application of combined collector in lithium mica flotation[J]. Non-metallic Mines, 2013(4): 2931. https://www.cnki.com.cn/Article/CJFDTOTAL-FJSK201304009.htm
[13] 周贺鹏, 张永兵, 雷梅芬, 等. 磁选尾矿综合回收钽铌锂及长石选矿工艺研究[J]. 非金属矿, 2018, 41(3): 69-71. https://www.cnki.com.cn/Article/CJFDTOTAL-FJSK201803023.htm
ZHOU H P, ZHANG Y B, LEI M F, et al. Study on beneficiation process of comprehensive recovery of tantalum, niobium, lithium and feldspar from magnetic separation tailings[J]. Non-metallic Mines, 2018, 41(3): 69-71. https://www.cnki.com.cn/Article/CJFDTOTAL-FJSK201803023.htm
[14] 张慧婷. 十二胺和油酸组合捕收剂在锂云母表面吸附的分子动力学模拟[D]. 赣州: 江西理工大学, 2017.
ZHANG H T. Molecular dynamics simulation of adsorption of dodecylamine and oleic acid combined collector on the surface of lithium mica[D]. Ganzhou: Jiangxi University of Science and Technology, 2017.
[15] 艾光华, 严华山, 吴艺鹏, 等. 综合回收某含钽铌锂云母矿的选矿试验研究[J]. 非金属矿, 2014(4): 4-6. https://www.cnki.com.cn/Article/CJFDTOTAL-FJSK201404002.htm
AI G H, YAN H S, WU Y P, et al. Experimental study on mineral processing of comprehensive recovery from a Ta-Nb lepidolite ore[J]. Non-metallic Mines, 2014(4): 4-6. https://www.cnki.com.cn/Article/CJFDTOTAL-FJSK201404002.htm
[16] 冯金妮. 锂云母高效捕收剂的选择及机理研究[D]. 赣州: 江西理工大学, 2013.
FENG J N. Study on the selection and mechanism of lithium mica high efficiency collector[D]. Ganzhou: Jiangxi University of Science and Technology, 2013.
[17] 周贺鹏, 张永兵, 雷梅芬, 等. 江西宜春高铁锂云母矿浮选分离试验研究[J]. 非金属矿, 2019, 42(4): 64-67. https://www.cnki.com.cn/Article/CJFDTOTAL-FJSK201904020.htm
ZHOU H P, ZHANG Y B, LEI M F, et al. Flotation separation test of zinnwaldite in Yichun of Jiangxi[J]. Non-metallic Mines, 2019, 42(4): 64-67. https://www.cnki.com.cn/Article/CJFDTOTAL-FJSK201904020.htm
[18] 谭超兵. 新疆云母超细磨矿及磨矿机理研究[D]. 武汉: 武汉理工大学, 2003.
TAN C B. Study on ultrafine grinding and grinding mechanism of mica in Xinjiang[D]. Wuhan: Wuhan University of Technology, 2003.
[19] 李利娟, 张凡. 某钽铌重选尾矿中的锂云母浮选试验研究[J]. 矿业研究与开发, 2013, 33(2): 57-59+109. https://www.cnki.com.cn/Article/CJFDTOTAL-KYYK201302015.htm
LI L J, ZHANG F. Experimental study on lithium mica flotation in a tantalum niobium gravity separation tailings[J]. Mining Research and Development, 2013, 33(2): 57-59+109. https://www.cnki.com.cn/Article/CJFDTOTAL-KYYK201302015.htm
[20] 周贺鹏, 耿亮, 郭亮, 等. 江西宜春低品位锂云母矿综合回收工艺研究[J]. 非金属矿, 2020, 43(4): 59-61+98. https://www.cnki.com.cn/Article/CJFDTOTAL-FJSK202004017.htm
ZHOU H P, GENG L, GUO L, et al. Study on comprehensive recovery process of low-grade lepidolite ore in Yichun, Jiangxi[J]. Non-metallic Mines, 2020, 43(4): 59-61+98. https://www.cnki.com.cn/Article/CJFDTOTAL-FJSK202004017.htm
-