Preparation of Mica Based Adsorbent Through Mechanochemical Activation and Its Adsorption Performance for Cd(Ⅱ)
-
摘要:
重金属离子的绿色高效去除技术一直是环境科学领域的研究重点。采用机械力化学法通过添加MgSO4制备了云母基环境功能材料,并考察了其对溶液中Cd(Ⅱ)的吸附性能。研究结果表明,采用行星式球磨机,在600 r/min转速下共磨云母原样和MgSO4颗粒1 h即可得到该云母基吸附材料。当其用量为5 g/L时,处理Cd(Ⅱ)初始质量浓度为100 mg/L、pH为6的溶液,Cd(Ⅱ)吸附率可达87.79%。溶液中的Cd(Ⅱ)通过与Mg(Ⅱ)交换而被吸附固定在材料中。该研究为云母基矿物材料的制备提供了一条新的路径。
Abstract:Green technology for efficient removal of heavy metal ions has always been the focus of environmental science. Mica based materials for environmental applications were prepared by mechanochemical method by adding MgSO4, and their adsorption properties for Cd(Ⅱ) in solution were investigated. The results showed that the mica-based adsorbent was obtained by co-grinding mica raw material and MgSO4 particles at 600 r/min for 1 h with a planetary ball mill. At a dosage of 5 g/L, the adsorption rate of Cd(Ⅱ) was reach 87.79% when the initial mass concentration of Cd(Ⅱ) was 100 mg/L and the pH was 6. Cd(Ⅱ) in the solution was adsorbed and fixed in the material by exchange with Mg(Ⅱ). This study provides a novel path for the preparation of mica based mineral materials.
-
Key words:
- mechanochemistry /
- mica /
- environmental functional materials /
- heavy metal ions /
- ball milling
-
-
表 1 云母原样化学成分
/% Table 1. Chemical compositions of raw muscovite sample
成分 SiO2 Al2O3 K2O Fe2O3 TiO2 Na2O MgO CaO P2O5 烧失量 含量 53.46 27.40 7.53 5.03 0.94 0.68 0.54 0.36 0.04 3.92 -
[1] JIANG H K, JIANG L, ZHANG P, et al. Force-induced self-assembly of supramolecular modified mica nanosheets for ductile and heat-resistant mica papers[J]. Langmuir, 2021, 37(17): 5131-5138. doi: 10.1021/acs.langmuir.1c00001
[2] 徐启云. 某含钽铌锂云母多金属矿选矿工艺研究[J]. 湖南有色金属, 2022, 38(1): 8-11+36. https://www.cnki.com.cn/Article/CJFDTOTAL-HNYJ202201003.htm
XU Q Y. Study on beneficiation process of a tantalum niobium lepidolite polymetallic ore[J]. Hunan Nonferrous Metals, 2022, 38(1): 8-11+36 https://www.cnki.com.cn/Article/CJFDTOTAL-HNYJ202201003.htm
[3] 余力, 戴慧新. 云母的加工与应用[J]. 云南冶金, 2011, 40(5): 25-28+41. https://www.cnki.com.cn/Article/CJFDTOTAL-YNYJ201105006.htm
YU L, DAI H X. Processing and application of mica[J]. Yunnan Metallurgy, 2011, 40(5): 25-28+41. https://www.cnki.com.cn/Article/CJFDTOTAL-YNYJ201105006.htm
[4] 傅东, 高建庭. 我国碎云母开发应用的若干问题及对策[J]. 中国非金属矿工业导刊, 2014(3): 7-9. https://www.cnki.com.cn/Article/CJFDTOTAL-LGFK201403002.htm
FU D, GAO J T. Some problems and countermeasures in the development and application of crushed mica in China[J]. China Non-metallic Mineral Industry Guide, 2014(3): 7-9. https://www.cnki.com.cn/Article/CJFDTOTAL-LGFK201403002.htm
[5] 李凤, 宋永胜, 李文娟, 等. 从某石墨尾矿中回收绢云母的选矿试验[J]. 金属矿山, 2014(8): 170-174. https://www.cnki.com.cn/Article/CJFDTOTAL-JSKS201408042.htm
LI F, SONG Y S, LI W J, et al. Beneficiation test of recovering sericite from a graphite tailings[J]. Metal Mines, 2014(8): 170-174. https://www.cnki.com.cn/Article/CJFDTOTAL-JSKS201408042.htm
[6] 陈果, 梁冠杰, 刘猛. 甘肃某铷多金属矿中含铷白云母的选矿试验研究[J]. 矿业研究与开发, 2018, 38(9): 59-62. https://www.cnki.com.cn/Article/CJFDTOTAL-KYYK201809013.htm
CHEN G, LIANG G J, LIU M. Experimental study on beneficiation of rubidium bearing muscovite in a rubidium polymetallic ore in Gansu[J]. Mining Research and Development, 2018, 38(9): 59-62. https://www.cnki.com.cn/Article/CJFDTOTAL-KYYK201809013.htm
[7] 陈杜娟, 郭海宁, 王志丰. 某铷矿中含铷黑云母的选矿试验研究[J]. 矿冶工程, 2018, 38(5): 61-64. https://www.cnki.com.cn/Article/CJFDTOTAL-KYGC201805017.htm
CHEN D J, GUO H N, WANG Z F. Experimental study on beneficiation of rubidium bearing biotite in a rubidium ore[J]. Mining and Metallurgy Engineering, 2018, 38(5): 61-64. https://www.cnki.com.cn/Article/CJFDTOTAL-KYGC201805017.htm
[8] 历平, 高野, 徐铜林, 等. 辽宁某铁尾矿云母选矿试验研究[J]. 中国非金属矿工业导刊, 2021(3): 53-55. https://www.cnki.com.cn/Article/CJFDTOTAL-LGFK202103021.htm
LI P, GAO Y, XU T L, et al. Experimental study on mica beneficiation of an iron tailings in Liaoning[J]. China Nonmetallic Mineral Industry Guide, 2021(3): 53-55. https://www.cnki.com.cn/Article/CJFDTOTAL-LGFK202103021.htm
[9] 田敏, 张红新, 赵恒勤, 等. 某云母矿中稀有金属赋存状态分析及云母选矿工艺研究[J]. 矿产综合利用, 2021(5): 97-105. https://www.cnki.com.cn/Article/CJFDTOTAL-KCZL202105015.htm
TIAN M, ZHANG H X, ZHAO H Q, et al. Occurrence state analysis of rare metals in a mica ore and Study on mica beneficiation process[J]. Comprehensive Utilization of Mineral Resources, 2021(5): 97-105. https://www.cnki.com.cn/Article/CJFDTOTAL-KCZL202105015.htm
[10] 陈慧杰, 于阳辉, 潘卫, 等. 新疆某白云母选矿试验研究[J]. 非金属矿, 2021, 44(6): 66-68+73. https://www.cnki.com.cn/Article/CJFDTOTAL-FJSK202106019.htm
CHEN H J, YU Y H, PAN W, et al. Experimental study on beneficiation of muscovite in Xinjiang[J]. Nonmetallic Ore, 2021, 44(6): 66-68+73. https://www.cnki.com.cn/Article/CJFDTOTAL-FJSK202106019.htm
[11] 杨天宇, 朱朋利, 王凯, 等. 云母粉表面改性及其在工业防腐涂料中的应用[J]. 中国涂料, 2021, 36(12): 52-56+64. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGTU202112011.htm
YANG T Y, ZHU P L, WANG K, et al. Surface modification of mica powder and its application in industrial anticorrosive coatings[J]. China Coatings, 2021, 36(12): 52-56+64. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGTU202112011.htm
[12] 胡慧敏, 张其武. 球磨调控非金属矿物反应活性实现重金属环境净化及资源再生利用[J]. 金属矿山, 2020(10): 82-91. https://www.cnki.com.cn/Article/CJFDTOTAL-JSKS202010011.htm
HU H M, ZHANG Q W. Ball milling regulates the reaction activity of non-metallic minerals to realize environmental purification and resource recycling of heavy metals[J]. Metal Mines, 2020(10): 82-91. https://www.cnki.com.cn/Article/CJFDTOTAL-JSKS202010011.htm
[13] 夏延秋, 李庆贺, 王远慧, 等. 白云母和高岭土作聚四氟乙烯润滑脂添加剂的摩擦学性能[J]. 石油炼制与化工, 2021, 52(11): 56-63. https://www.cnki.com.cn/Article/CJFDTOTAL-SYLH202111018.htm
XIA Y Q, LI Q H, WANG Y H, et al. Tribological properties of muscovite and kaolin as PTFE grease additives[J]. Petroleum refining and chemical engineering, 2021, 52(11): 56-63. https://www.cnki.com.cn/Article/CJFDTOTAL-SYLH202111018.htm
[14] 刘岩矗. 共磨白云母和钙镁盐制备钾硅肥及重金属离子固定剂[D]. 武汉: 武汉理工大学, 2020.
LIU Y C. Preparation of potassium silicon fertilizer and heavy metal ion fixative by Co- grinding muscovite and calcium magnesium salt[D]. Wuhan: Wuhan University of technology, 2020.
[15] SALAM M A, ABUKHADRA M R, MOSTAFA M. Effective decontamination of As(Ⅴ), Hg(Ⅱ), and U(Ⅵ) toxic ions from water using novel muscovite/zeolite aluminosilicate composite: adsorption behavior and mechanism. [J]. Environ Sci Pollut Res Int, 2020, 27(12): 13247-13260.
[16] 夏银, 刘月迎, 王丽娟, 等. 蛭石对水中重金属离子的吸附性能[J]. 硅酸盐学报, 2022, 50(5): 1357-1363. https://www.cnki.com.cn/Article/CJFDTOTAL-GXYB202205019.htm
XIA Y, LIU Y Y, WANG L J, et al. Adsorption properties of vermiculite for heavy metal ions in water[J]. Journal of Silicate, 2022, 50(5): 1357-1363. https://www.cnki.com.cn/Article/CJFDTOTAL-GXYB202205019.htm
[17] 罗东霞. 绿色木霉对云母矿物吸附Pb2+的调控机制研究[D]. 兰州: 兰州大学, 2021.
LUO D X. Study on the regulation mechanism of trichoderma viride on the adsorption of Pb2+ on mica minerals[D]. Lanzhou: Lanzhou University, 2021.
[18] 崔迎辉. 改性蛭石对重金属离子Pb(Ⅱ)、Cr(Ⅵ)的吸附应用[D]. 成都: 成都理工大学, 2017.
CUI Y H. Adsorption and application of modified vermiculite for heavy metal ions Pb (Ⅱ) and Cr (Ⅵ)[D]. Chengdu: Chengdu University of technology, 2017.
[19] BO Y, LI B L, et al. Extraction of potassium from K-feldspar via the CaCl2 calcination route[J]. Chin J Chem Eng, 2015, 23(9): 1557-1564.
[20] MANOH MENON, SANDRA HEMLE, MADELEINE S, et al. Effects of heavy metal soil pollution and acid rain on growth and water use efficiency of a young model forest ecosystem[J]. Plant Soil, 2007, 297(1/2): 171-183.
[21] WEI L, SUN B F, JIANG F, et al. Effect of carbon nanotubes on cd(Ⅱ) adsorption by sediments[J]. Chemical Engineering Journal, 2015, 264: 645-653.
-