混维凹凸棒石黏土应用现状与前景展望

卢予沈, 牟斌, 惠爱平, 杨芳芳, 王爱勤. 混维凹凸棒石黏土应用现状与前景展望[J]. 矿产保护与利用, 2023, 43(1): 1-13. doi: 10.13779/j.cnki.issn1001-0076.2022.07.018
引用本文: 卢予沈, 牟斌, 惠爱平, 杨芳芳, 王爱勤. 混维凹凸棒石黏土应用现状与前景展望[J]. 矿产保护与利用, 2023, 43(1): 1-13. doi: 10.13779/j.cnki.issn1001-0076.2022.07.018
LU Yushen, MU Bin, HUI Aiping, YANG Fangfang, WANG Aiqin. Application Status and Prospects of Mixed-dimensional Attapulgite Clay[J]. Conservation and Utilization of Mineral Resources, 2023, 43(1): 1-13. doi: 10.13779/j.cnki.issn1001-0076.2022.07.018
Citation: LU Yushen, MU Bin, HUI Aiping, YANG Fangfang, WANG Aiqin. Application Status and Prospects of Mixed-dimensional Attapulgite Clay[J]. Conservation and Utilization of Mineral Resources, 2023, 43(1): 1-13. doi: 10.13779/j.cnki.issn1001-0076.2022.07.018

混维凹凸棒石黏土应用现状与前景展望

  • 基金项目: 国家自然科学基金项目(22105212);甘肃省自然科学基金项目(21JR7RA079、22JR5RA104);甘肃省重大专项“揭榜挂帅”项目(21ZD2JA002)
详细信息
    作者简介: 卢予沈(1995—),男,河南沈丘人,博士,特别研究助理,主要从事矿物功能材料研究,E-mail:yslu17@licp.cas.cn
    通讯作者: 王爱勤(1963—),男,甘肃民勤人,研究员,主要从事矿物功能材料研究,E-mail:aqwang@licp.cas.cn
  • 中图分类号: TD985

Application Status and Prospects of Mixed-dimensional Attapulgite Clay

More Information
  • 混维凹凸棒石黏土的主要矿物成分是凹凸棒石,还含有伊利石、绿泥石、高岭石和伊蒙混层黏土等,大多呈现砖红色、灰色或土黄色。由于共存矿物组成相对复杂和色泽较深,混维凹凸棒石黏土过去常常被认为是低品位矿,不具备工业应用价值。随着高纯凹凸棒石黏土资源的快速消耗,自然界中储量更大的混维凹凸棒石黏土高值利用受到了重视。介绍了混维凹凸棒石黏土中黏土矿物含量差异、棒晶发育和类质同晶取代等主要特征,系统总结了在环境污染物吸附、土壤改良与修复、功能复合材料及其结构演化等方面的应用研究现状,从工业潜在应用角度展望了未来研究的重点方向,以期为我国混维凹凸棒石黏土的高效利用提供新视角。

  • 加载中
  • 图 1  凹凸棒石的吸附性能、胶体性能、载体性能和补强性能示意图

    Figure 1. 

    图 2  甘肃临泽正北山样品的扫描电镜图像(Plg. 斜长石;Qz. 石英;Dol. 白云石;Gp. 石膏;I/S. 伊蒙混层矿物[14]

    Figure 2. 

    图 3  甘肃临泽杨台洼滩盆地自上而下不同高度样品新鲜面的扫描电镜图像(KX-2: 顶部, KX-6: 底部)[17]

    Figure 3. 

    图 4  临泽开茂灰层、开茂灰红交界层、开茂红层、凯西、羊台山和地脉通混维凹凸棒石黏土矿数码照片[22]

    Figure 4. 

    图 5  混维凹凸棒石黏土(MDA)和不同反应时间制得nZVI/OTAC/MDA的扫描电镜照片[30]

    Figure 5. 

    图 6  (a~b)混维凹凸棒石黏土(MDA)、(c~e)δ-MnO2、(f~o)δ-MnO2/MDA复合材料的扫描电镜和透射电镜图像;(p)δ-MnO2/MDA复合材料降解甲醛的可能机制[74]

    Figure 6. 

    图 7  MDA和SA/PVA基质之间相互作用的示意图[81]

    Figure 7. 

    图 8  (a)草酸溶蚀混维凹凸棒石黏土(OA-MDA)负载纳米银构筑复合抗菌材料的示意图;AgNPs/MDA(b)、AgNPs/OA-MDA-24h(c)、AgNPs/OA-MDA-72h(d)和AgNPs/OA-MDA-120h(e)的透射电子显微镜图像[16]

    Figure 8. 

  • [1]

    王爱勤, 王文波, 郑易安, 等. 凹凸棒石棒晶束解离及其纳米功能复合材料[M]. 北京: 科学出版社, 2014.

    WANG A Q, WANG W B, ZHENG Y A, et al. Disaggregation of attapulgite crystal bundles for functional nanocomposite materials[M]. Beijing: Science Press, 2014.

    [2]

    DONG K J, GU X B, PENG L H, et al. Recent advancements in typical mineral-encapsulated form-stable phase change materials for thermal energy storage[J]. Journal of Energy Storage, 2022, 52: 104931. doi: 10.1016/j.est.2022.104931

    [3]

    YANG F F, WANG A Q. Recent researches on antimicrobial nanocomposite and hybrid materials based on sepiolite and palygorskite[J]. Applied Clay Science, 2022, 219: 106454. doi: 10.1016/j.clay.2022.106454

    [4]

    JIA L, ZHANG Y S, ZHU T F, et al. Study on visual multicolor intelligent detection of tetracycline antibiotics in various environmental samples by palygorskite-based fluorescent nano-probe[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects, 2022, 642: 128690. doi: 10.1016/j.colsurfa.2022.128690

    [5]

    ZHANG J F, LIANG Z L, LIU J X, et al. Preparation and performance analysis of palygorskite reinforced silicone-acrylic emulsion-based intumescent coating[J]. Progress in Organic Coatings, 2022, 166: 106801. doi: 10.1016/j.porgcoat.2022.106801

    [6]

    ZHAO Y J, ZHAO S Y, GUO H C, et al. Facile synthesis of phytic acid@attapulgite nanospheres for enhanced anti-corrosion performances of coatings[J]. Progress in Organic Coatings, 2018, 117: 47−55. doi: 10.1016/j.porgcoat.2018.01.004

    [7]

    HUANG D J, ZHENG Y T, QUAN Q L. Enhanced mechanical properties and UV shield of carboxymethyl cellulose films with polydopamine-modified natural fibre-like palygorskite[J]. Applied Clay Science, 2019, 183: 105314. doi: 10.1016/j.clay.2019.105314

    [8]

    PENG J T, WEI C D, LI X, et al. Insight into catalyst of tetramethylguanidine decorated palygorskite for CO2 conversion assisted with zinc halides[J]. Applied Clay Science, 2022, 228: 106626. doi: 10.1016/j.clay.2022.106626

    [9]

    WANG W B, WANG A Q. Recent progress in dispersion of palygorskite crystal bundles for nanocomposites[J]. Applied Clay Science, 2016, 119: 18−30. doi: 10.1016/j.clay.2015.06.030

    [10]

    王文波, 牟斌, 张俊平, 等. 凹凸棒石: 从矿物材料到功能材料[J]. 中国科学: 化学, 2018, 48(12): 1432−1451.

    WANG W B, MU B, ZHANG J P, et al. Attapulgite: from clay minerals to functional materials[J]. Science China Chemistry, 2018, 48(12): 1432−1451.

    [11]

    ZHANG H, WANG W B, WANG X W, et al. Potential of oxalic acid leached natural palygorskite-rich clay as multidimensional nanofiller to improve polypropylene[J]. Powder Technology, 2022, 396: 456−466. doi: 10.1016/j.powtec.2021.10.052

    [12]

    LU Y S, ZHANG H, WANG Q, et al. Hydrochloric acid pretreatment combined with microwave-assisted oxalic acid leaching of natural red palygorskite-rich clay for efficiently change the color and properties[J]. Applied Clay Science, 2022, 228: 106594. doi: 10.1016/j.clay.2022.106594

    [13]

    易发成, 田煦. 苏皖凹凸棒石粘土矿石评价的若干问题[J]. 建材地质, 1995(3): 1−7.

    XI F C, TIAN X. Some problems in the evaluation of attapulgite clay ore in Jiangsu and Anhui Province[J]. Building Materials and Geology, 1995(3): 1−7.

    [14]

    徐帆, 谢巧勤, 徐亮, 等. 甘肃临泽正北山凹凸棒石黏土矿物学及形成机制[J]. 地质科学, 2022, 57(2): 587−605. doi: 10.12017/dzkx.2022.034

    XU F, XIE Q Q, XU L, et al. Mineralogy and formation mechanism of attapulgite clay in Zhengbeishan, Linze, Gansu Province[J]. Chinese Journal of Geology, 2022, 57(2): 587−605. doi: 10.12017/dzkx.2022.034

    [15]

    薛爱莲, 范兆如, 毛恒洋, 等. 基于低品位天然凹凸棒石黏土的低成本蜂窝陶瓷[J]. 膜科学与技术, 2021, 41(6): 25−42.

    XUE A L, FAN Z H, Mao H Y, et al. Low cost honeycomb ceramic from natural low grade attapulgite clay[J]. Membrane Science and Technology, 2021, 41(6): 25−42.

    [16]

    ZHANG H, LU Y S, ZHANG Q, et al. Structural evolution of palygorskite-rich clay as the nanocarriers of silver nanoparticles for efficient improving antibacterial activity[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects, 2022, 652: 129885. doi: 10.1016/j.colsurfa.2022.129885

    [17]

    张帅, 刘莉辉, 乔志川, 等. 临泽县杨台洼滩新近系白杨河组凹凸棒石的成因[J]. 矿物学报, 2019, 39(6): 690−696.

    ZHANG S, LIU L H, QIAO Z C, et al. Genesis of attapulgite from the Neogene Baiyanghe Formation in the Yangtaiwatan area, Linze County, Gansu Province, China[J]. Acta Mineralogica Sinica, 2019, 39(6): 690−696.

    [18]

    任珺, 刘丽莉, 陶玲, 等. 甘肃地区凹凸棒石的矿物组成分析[J]. 硅酸盐通报, 2013, 32(11): 2362-2365.

    REN J, LIU L L, TAO L, et al. Mineral composition analysis of attapulgite from Gansu area[J], Bulletin of The Chinese Ceramic Society, 2013, 32(11): 2362-2365.

    [19]

    GALAN E, CARRETERO M I. A new approach to compositional limits for sepiolite and palygorskite[J]. Clays and Clay Minerals, 1999, 47(4): 399−409. doi: 10.1346/CCMN.1999.0470402

    [20]

    SUAREZ M, GARCÍA-ROMERO E, DEL RÍO M S, et al. The effect of the octahedral cations on the dimensions of the palygorskite cell[J]. Clay minerals, 2007, 42(3): 287−297. doi: 10.1180/claymin.2007.042.3.02

    [21]

    CHRYSSIKOS G D, GIONIS V, KACANDES G H, et al. Octahedral cation distribution in palygorskite[J]. American Mineralogist, 2009, 94(1): 200−203. doi: 10.2138/am.2009.3063

    [22]

    王爱勤, 牟斌, 张俊平, 等. 凹凸棒石新型功能材料及应用[M]. 北京: 科学出版社, 2021.

    WANG A Q, MU B, ZHANG J P, et al. Attapulgite-based new functional materials and its applications[M]. Beijing: Science Press, 2021.

    [23]

    ZHANG Y, WANG W B, ZHANG J P, et al. A comparative study about adsorption of natural palygorskite for methylene blue[J]. Chemical Engineering Journal, 2015, 262: 390−398. doi: 10.1016/j.cej.2014.10.009

    [24]

    张秀丽, 王明珊, 廖立兵. 凹凸棒石吸附地下水中氨氮的实验研究[J]. 非金属矿, 2010, 33(6): 64−67. doi: 10.3969/j.issn.1000-8098.2010.06.020

    ZHANG X L, WANG M S, LIAO L B. Experimental research on adsorption of ammonium nitrogen from groundwater by using attapulgite[J]. Non-Metallic Mines, 2010, 33(6): 64−67. doi: 10.3969/j.issn.1000-8098.2010.06.020

    [25]

    秦好静, 张秀丽, 杨志强, 等. 两种凹凸棒石吸附水中锰的实验研究[J]. 非金属矿, 2011, 34(1): 72−74. doi: 10.3969/j.issn.1000-8098.2011.01.022

    QIN H J, ZHANG X L, YANG Z Q, et al. Experimental research on adsorption of attapulgite to manganese ions from water[J]. Non-Metallic Mines, 2011, 34(1): 72−74. doi: 10.3969/j.issn.1000-8098.2011.01.022

    [26]

    张珊, 张蕊, 薛华丽, 等. 凹凸棒土对梨果汁中棒曲霉素的吸附作用[J]. 食品科学, 2019, 40(15): 57−63. doi: 10.7506/spkx1002-6630-20180910-101

    ZHANG S, ZHANG R, XUE H L, et al. Adsorption efficiency of attapulgite towards patulin in pear juice[J]. Food Science, 2019, 40(15): 57−63. doi: 10.7506/spkx1002-6630-20180910-101

    [27]

    张媛, 尹建军, 王文波, 等. 酸活化对甘肃会宁凹凸棒石微观结构及亚甲基蓝吸附性能的影响[J]. 非金属矿, 2014, 37(2): 58−62. doi: 10.3969/j.issn.1000-8098.2014.02.018

    ZHANG Y, YIN J J, WANG W B, et al. Effects of acid activation on the microstructure and adsorption capacity for methylene blue of attapulgite clay from Huining of Gansu[J]. Non-Metallic Mines, 2014, 37(2): 58−62. doi: 10.3969/j.issn.1000-8098.2014.02.018

    [28]

    刘宇航, 孙仕勇, 冉胤鸿, 等. 甘肃临泽高铁凹凸棒土的活化及吸附特性研究[J]. 非金属矿, 2019, 42(6): 15−18. doi: 10.3969/j.issn.1000-8098.2019.06.004

    LIU Y H, SUN S Y, RAN Y H, et al. Activation and adsorption properties of high-iron attapulgite from Linze of Gansu[J]. Non-Metallic Mines, 2019, 42(6): 15−18. doi: 10.3969/j.issn.1000-8098.2019.06.004

    [29]

    苏军霞, 唐晶兰, 曹成. 改性凹凸棒石对F-的吸附性能研究[C]∥甘肃省化学会第二十八届年会暨第十届中学化学教学经验交流会论文集, 2013: 295.

    SU J X, TANG J L, CAO C. Adsorption properties of modified attapulgite for F-[C]∥Proceedings of the 28th Annual Meeting of Gansu Chemical Society and the 10th Middle School Chemistry Teaching Experience Exchange Conference, 2013: 295

    [30]

    谢刚, 王国英, 伍世林, 等. 有机凹凸棒石负载纳米铁降解溶液中双酚A[J]. 环境科学与技术, 2016(2): 128−133.

    XIE G, WANG G Y, WU S L, et al. Organattapulgite-supported nanoscale zero-valent iron for removing bisphenol A in aqueous solution[J]. Environmental Science and Technology, 2016(2): 128−133.

    [31]

    WANG W J, CHEN H, WANG A Q. Adsorption characteristics of Cd(Ⅱ) from aqueous solution onto activated palygorskite[J]. Separation and Purification Technology, 2007, 55(2): 157−164. doi: 10.1016/j.seppur.2006.11.015

    [32]

    CHEN H, WANG A Q. Kinetic and isothermal studies of lead ion adsorption onto palygorskite clay[J]. Journal of Colloid and Interface Science, 2007, 307(2): 309−316. doi: 10.1016/j.jcis.2006.10.054

    [33]

    HUANG R L, LIN Q T, ZHONG Q F, et al. Removal of Cd(Ⅱ) and Pb(Ⅱ) from aqueous solution by modified attapulgite clay[J]. Arabian Journal of Chemistry, 2020, 13(4): 4994−5008. doi: 10.1016/j.arabjc.2020.01.022

    [34]

    ZHANG Q H, CAI L. Removal of Cd(Ⅱ) from aqueous solutions by aluminium hydroxide-modified attapulgite[J]. Polish Journal Environmental Studies, 2021, 30: 1−11.

    [35]

    DAI L, MENG K, ZHAO W F, et al. Enhanced removal of Cd2+ by nano zero-valent iron modified attapulgite from aqueous solution: optimal design, characterization and adsorption mechanism[J]. Journal of Environmental Chemical Engineering, 2022, 10(3): 107719. doi: 10.1016/j.jece.2022.107719

    [36]

    SUN P, ZHANG W, ZOU B Z, et al. Efficient adsorption of Cu(Ⅱ), Pb(Ⅱ) and Ni(Ⅱ) from waste water by PANI@APTS-magnetic attapulgite composites[J]. Applied Clay Science, 2021, 209: 106151. doi: 10.1016/j.clay.2021.106151

    [37]

    FAN Q H, TAN X L, LI J X, et al. Sorption of Eu(Ⅲ) on attapulgite studied by batch, XPS, and EXAFS Techniques[J]. Environmental Science & Technology, 2009, 43(15): 5776−5782.

    [38]

    FAN Q H, WU W S, SONG X P, et al. Effect of humic acid, fulvic acid, pH and temperature on the sorption-desorption of Th(IV) on attapulgite[J]. rca-Radiochimica Acta, 2008, 96(3): 159−165.

    [39]

    TAN L Q, JIN Y L, CHEN J, et al. Sorption of radiocobalt(Ⅱ) from aqueous solutions to Na-attapulgite[J]. Journal of Radioanalytical and Nuclear Chemistry, 2011, 289(2): 601−610. doi: 10.1007/s10967-011-1121-z

    [40]

    PAN D Q, FAN Q H, FAN F Y, et al. Removal of uranium contaminant from aqueous solution by chitosan@attapulgite composite[J]. Separation and Purification Technology, 2017, 177: 86−93. doi: 10.1016/j.seppur.2016.12.026

    [41]

    CHEN L, XU J Z, HU J. Removal of U(Ⅵ) from aqueous solutions by using attapulgite/iron oxide magnetic nanocomposites[J]. Journal of Radioanalytical and Nuclear Chemistry, 2013, 297(1): 97−105. doi: 10.1007/s10967-012-2360-3

    [42]

    吕国诚, 廖立兵, 饶文秀, 等. 凹凸棒石的资源及应用研究进展[J]. 矿产保护与利用, 2019, 39(6): 112−120. doi: 10.13779/j.cnki.issn1001-0076.2019.06.016

    LV G C, LIAO L B, RAO W X, et al. Resource distribution and application of attapulgite[J]. Conservation and Utilization of Mineral Resources, 2019, 39(6): 112−120. doi: 10.13779/j.cnki.issn1001-0076.2019.06.016

    [43]

    王孝通, 崔峤, 张国英. 临泽杨台洼滩凹凸棒粘土及石膏矿床[J]. 甘肃地质学报, 2005(1): 90−95.

    WANG X T, CUI Q, ZHANG G Y. Attapulgite clay deposit and gypsum deposit of Yangtaiwatan in Linze disttrict[J]. Acta Geologica Gansu, 2005(1): 90−95.

    [44]

    柴宗越, 陈馨, 强浩然, 等. 凹凸棒石添加量对草莓栽培基质及果实品质产量的影响[J]. 甘肃农业科技, 2020(4): 47−52. doi: 10.3969/j.issn.1001-1463.2020.04.012

    CHAI Z Y, CHEN X, QIANG H R, et al. Effect of attapulgite addition amount on strawberry cultivation substrate and fruit quality yield[J]. Gansu Agricultural Science and Technology, 2020(4): 47−52. doi: 10.3969/j.issn.1001-1463.2020.04.012

    [45]

    毛森煜, 魏周秀. 不同用量凹凸棒粉在西兰花生产上的应用效果试验初报[J]. 农业科技与信息, 2018(5): 15−17.

    MAO S Y, WEI Z X. Application effect of different dosage of attapulgite powder on broccoli production: preliminary report[J]. Agricultural Technology and Information, 2018(5): 15−17.

    [46]

    YUAN J, E S, CHE Z. The ameliorative effects of low-grade palygorskite on acidic soil[J]. Soil Research, 2020, 58(4): 411−419. doi: 10.1071/SR19178

    [47]

    刘学周, 蔺海明, 王蒂, 等. 施用坡缕石对黄绵土中尿素氮的挥发和淋溶损失的影响[J]. 应用生态学报, 2009, 20(4): 823−828.

    LIU X Z, LAN H M, WANG D, et al. Effects of palygorskite application on volatilization and leaching losses of urea nitrogen in loess soil[J]. Chinese Journal of Applied Ecology, 2009, 20(4): 823−828.

    [48]

    雒军, 王引权, 彭桐, 等. 凹凸棒石调节源-库关系提高当归药材产量和总阿魏酸含量[J]. 中国中药杂志, 2022, 47(15): 4042−4047.

    LUO J, WANG Y Q, PENG T, et al. Attapulgite can improve yield and total ferulic acid content of Angelica sinensis by adjusting source-sink relationship[J]. Chinese Journal of Chinese Materia Medica, 2022, 47(15): 4042−4047.

    [49]

    LIU Y, TIAN Y, YUE L, et al. Effectively controlling Fusarium root rot disease of Angelica sinensis and enhancing soil fertility with a novel attapulgite-coated biocontrol agent[J]. Applied Soil Ecology, 2021, 168: 104121. doi: 10.1016/j.apsoil.2021.104121

    [50]

    RAFIQ M K, JOSEPH S D, LI F, et al. Pyrolysis of attapulgite clay blended with yak dung enhances pasture growth and soil health: characterization and initial field trials[J]. Science of The Total Environment, 2017, 607-608: 184−194. doi: 10.1016/j.scitotenv.2017.06.186

    [51]

    陈红, 王文波, 王爱勤. 不同矿点凹凸棒黏土对复合高吸水性树脂吸水性能的影响[J]. 非金属矿, 2011, 34(1): 1−3+25.

    CHEN H, WANG W B, WANG A Q. Effect of attapulgite from different zone on water absorbency of superabsorbent composites[J]. Non-Metallic Mines, 2011, 34(1): 1−3+25.

    [52]

    MA G F, YANG Q, RAN F T, et al. High performance and low cost composite superabsorbent based on polyaspartic acid and palygorskite clay[J]. Applied Clay Science, 2015, 118: 21−28. doi: 10.1016/j.clay.2015.09.001

    [53]

    ZHANG J P, CHEN H, WANG A Q. Study on superabsorbent composite. Ⅲ. Swelling behaviors of polyacrylamide/attapulgite composite based on acidified attapulgite and organo-attapulgite[J]. European Polymer Journal, 2005, 41(10): 2434−2442. doi: 10.1016/j.eurpolymj.2005.03.022

    [54]

    ZHANG J P, LI A, WANG A Q. Study on superabsorbent composite. V. Synthesis, swelling behaviors and application of poly(acrylic acid-co-acrylamide)/sodium humate/attapulgite superabsorbent composite[J]. Polymers for Advanced Technologies, 2005, 16(11-12): 813−820. doi: 10.1002/pat.657

    [55]

    DAI L, REN J, LING T, et al. Chemical speciation and phytoavailability of Cr, Ni, Zn and Cu in loess amended with attapulgite-stabilized sewage sludge[J]. Environmental Pollutants and Bioavailability, 2019, 31(1): 112−119. doi: 10.1080/26395940.2019.1588076

    [56]

    任珺, 张凌云, 刘瑞珍, 等. 甘肃凹凸棒石对土壤Cd污染的钝化修复研究[J]. 非金属矿, 2021, 44(1): 5−8. doi: 10.3969/j.issn.1000-8098.2021.01.002

    REN J, ZHANG L Y, LIU R Z, et al. Stabilizing remediation of soil contaminated by Cd applying Gansu attapulgite[J]. Non-Metallic Mines, 2021, 44(1): 5−8. doi: 10.3969/j.issn.1000-8098.2021.01.002

    [57]

    任珺, 王艺蓉, 任汉儒, 等. 凹凸棒石对Cd污染土壤的钝化修复研究[J]. 非金属矿, 2021, 44(5): 50−55. doi: 10.3969/j.issn.1000-8098.2021.05.013

    REN J, WANG Y R, REN H R, et al. Stabilization remediation of soil polluted by Cd Using attapulgite[J]. Non-Metallic Mines, 2021, 44(5): 50−55. doi: 10.3969/j.issn.1000-8098.2021.05.013

    [58]

    陶玲, 刘伟, 刘瑞珍, 等. 酸活化坡缕石对土壤中Cd的钝化效果研究[J]. 岩石矿物学杂志, 2021, 40(4): 795−803. doi: 10.3969/j.issn.1000-6524.2021.04.011

    TAO L, LIU W, LIU R Z, et al. The effect of palygorskite modified by acid on stabilization of Cd in soil[J]. Acta Petrologica Et mineralogica, 2021, 40(4): 795−803. doi: 10.3969/j.issn.1000-6524.2021.04.011

    [59]

    任珺, 王艺蓉, 任汉儒, 等. 聚合氯化铝铁/凹凸棒石对土壤Cd环境风险影响[J]. 非金属矿, 2021, 44(6): 74−78. doi: 10.3969/j.issn.1000-8098.2021.06.020

    REN J, WANG Y R, REN H R, et al. Influence of PAFC modified attapulgite on soil Cd environmental risk[J]. Non-Metallic Mines, 2021, 44(6): 74−78. doi: 10.3969/j.issn.1000-8098.2021.06.020

    [60]

    TAO L, MI X, REN H, et al. Stabilization of heavy metals in mining soil using palygorskite loaded by nanoscale zero-valent iron[J]. International Journal of Environmental Science and Technology, 2022, 19(7): 6789−6802. doi: 10.1007/s13762-021-03608-4

    [61]

    马文军, 沈金池, 王静, 等. 改性凹凸棒土添加对盆栽小麦植株重金属离子吸收的影响[J]. 农家参谋, 2019(9): 69−71.

    MA W J, SHEN J C, WANG J, et al. Effects of modified attapulgite on heavy metal ion uptake in potted wheat plants[J]. Farm Staff, 2019(9): 69−71.

    [62]

    陈馨, 蔺海明, 刘恬, 等. 凹凸棒复合土壤调理剂对苦荞产量及重金属吸收量的影响[J]. 甘肃农业科技, 2020(7): 28−31.

    CHEN X, LIN H M, LIU T, et al. Effect of attapulgite compound soil conditioner on tartary buckwheat yield and heavy metal absorption[J]. Gansu Agricultural Science and Technology, 2020(7): 28−31.

    [63]

    陶玲, 张倩, 张雪彬, 等. 凹凸棒石-污泥共热解生物炭对玉米苗期生长特性和重金属富集效应的影响[J]. 农业环境科学学报, 2020, 39(7): 1512−1520.

    TAO L, ZHANG Q, ZHANG X B. Influence of biochar prepared by co-pyrolysis with attapulgite and sludge on maize growth and heavy metal accumulation[J]. Journal of Agro-Environment Science, 2020, 39(7): 1512−1520.

    [64]

    CHEN T H, LIU H B, LI J H, et al. Effect of thermal treatment on adsorption-desorption of ammonia and sulfur dioxide on palygorskite: change of surface acid-alkali properties[J]. Chemical Engineering Journal, 2011, 166(3): 1017−1021. doi: 10.1016/j.cej.2010.11.094

    [65]

    刘辉, 任珺, 陶玲, 等. 酸热改性凹凸棒石粘土对低硫汽油的脱硫效果研究[J]. 中国非金属矿工业导刊, 2013(6): 25−26.

    LIU H, REN J, TAO L, et al. Desulfurizarion of acid-heat-modified attapulgite for low sulphur gasoline[J]. China Nonmetallic Minerals Industry, 2013(6): 25−26.

    [66]

    王青宁, 焦林宏, 陈静, 等. 凹凸棒黏土的提纯对噻吩化合物脱除的影响[J]. 矿物岩石, 2012, 32(2): 1−6. doi: 10.3969/j.issn.1001-6872.2012.02.001

    WANG Q N, JIAO L H, CHEN J, et al. Effect of purified of attapulgite clay on desulfurization performance for thiophene[J]. Journal of Mineralogy and Petrology, 2012, 32(2): 1−6. doi: 10.3969/j.issn.1001-6872.2012.02.001

    [67]

    俞树荣, 张婷, 戴虎虎, 等. 凹凸棒石复合氧化钙脱硫剂脱除SO2的试验研究[J]. 非金属矿, 2009, 32(6): 1−2+19. doi: 10.3969/j.issn.1000-8098.2009.06.001

    YU S R, ZHANG T, DAI H, et al. Study on desulfurization of SO2 by attapulgite/calcium oxide compond desulfurization agent[J]. Non-Metallic Mines, 2009, 32(6): 1−2+19. doi: 10.3969/j.issn.1000-8098.2009.06.001

    [68]

    李澜, 魏国玉, 李顺德, 等. 凹凸棒石基纳米氧化铁脱除硫化氢研究[J]. 矿物岩石, 2014, 34(3): 7−13.

    LI L, WEI G Y, LI S D, et al. Study of hydrogen sulfide removal based on the attapulgite of nano-iron oxide desulfurizer[J]. Journal of Mineralogy and Petrology, 2014, 34(3): 7−13.

    [69]

    WANG Y S, CHEN M Q, LI X J, et al. Hydrogen production via steam reforming of ethylene glycol over attapulgite supported nickel catalysts[J]. International Journal of Hydrogen Energy, 2018, 43(45): 20438−20450. doi: 10.1016/j.ijhydene.2018.09.109

    [70]

    LI G X, LI Y Z, MU R N, et al. Direct side-chain oxidation of ethylbenzene over supported Co4HP2Mo15V3O62 catalysts as a clean and highly efficient approach to producing acetophenone[J]. Reaction Kinetics, Mechanisms and Catalysis, 2013, 109(1): 199−212. doi: 10.1007/s11144-013-0555-4

    [71]

    DONG S W, CHEN T H, XU F, et al. Catalytic oxidation of toluene over Fe-rich palygorskitesupported manganese oxide: characterization and performance[J]. Catalysts, 2022, 12(7): 763. doi: 10.3390/catal12070763

    [72]

    ZHANG T, YU S R, FENG H X. Fenton-like mineralization of anion surfactant by Fe2O3/attapulgite catalyst[J]. Advanced Materials Research, 2012, 399-401: 1392−1395.

    [73]

    LIU X Y, XUE Y, LEI Y G, et al. Cobalt-activated amorphous MoSx nanodots grown in situ on natural attapulgite nanofibers for efficient visible-light-driven dye-sensitized H2 evolution[J]. ACS Applied Nano Materials, 2018, 1(11): 6493−6501. doi: 10.1021/acsanm.8b01785

    [74]

    洪晓梅, 陈天虎, 王灿, 等. 临泽红色低品位凹凸棒石黏土负载δ-MnO2室温降解甲醛[J]. 复合材料学报, 2022, 39(4): 1620−1630.

    HONG X M, CHEN T H, WANG C, et al. δ-MnO2 supported on low-grade palygorskite clay from Linze as a catalyst for formaldehyde catalytic oxidation at room temperature[J]. Acta Materiae Compositae Sinica, 2022, 39(4): 1620−1630.

    [75]

    刘宇航. 甘肃高铁凹凸棒土纳米酶催化活性研究[D]. 绵阳: 西南科技大学, 2021.

    LIU Y H. Study on catalytic activity of nano-enzyme of high iron attapulgite from Gansu Province[D]. Mianyang: Southwest University of Science and Technology, 2021.

    [76]

    LU Y S, DONG W K, WANG W B, et al. A comparative study of different natural palygorskite clays for fabricating cost-efficient and eco-friendly iron red composite pigments[J]. Applied Clay Science, 2019, 167: 50−59. doi: 10.1016/j.clay.2018.10.008

    [77]

    JIANG Y M, HAN S Y, ZHANG S G, et al. Improved properties by hydrogen bonding interaction of poly(lactic acid)/palygorskite nanocomposites for agricultural products packaging[J]. Polymer Composites, 2014, 35(3): 468−476. doi: 10.1002/pc.22683

    [78]

    LIU Y, HAN S Y, JIANG Y M, et al. Poly(lactic acid)/palygorskite nanocomposites: enhanced the physical and thermal properties[J]. Polymer Composites, 2017, 38(8): 1600−1608. doi: 10.1002/pc.23727

    [79]

    LEI Z L, YANG Q L, WU S, et al. Reinforcement of polyurethane/epoxy interpenetrating network nanocomposites with an organically modified palygorskite[J]. Journal of Applied Polymer Science, 2009, 111(6): 3150−3162. doi: 10.1002/app.29360

    [80]

    ZHANG J, WANG J L, WU Y Q, et al. Preparation and properties of organic palygorskite SBR/organic palygorskite compound and asphalt modified with the compound[J]. Construction and Building Materials, 2008, 22(8): 1820−1830. doi: 10.1016/j.conbuildmat.2007.05.001

    [81]

    DING J, HUANG D J, WANG W B, et al. Significantly improve the water and chemicals resistance of alginate-based nanocomposite films by a simple in-situ surface coating approach[J]. International Journal of Biological Macromolecules, 2020, 156: 1297−1307. doi: 10.1016/j.ijbiomac.2019.11.168

    [82]

    YANG Y F, WANG W B, ZHANG J P. A waterborne superLEphilic and thermostable separator based on natural clay nanorods for high-voltage lithium-ion batteries[J]. Materials Today Energy, 2020, 16: 100420. doi: 10.1016/j.mtener.2020.100420

    [83]

    WANG Q, ZHANG J P, WANG A Q. Preparation and characterization of a novel pH-sensitive chitosan-g-poly(acrylic acid)/attapulgite/sodium alginate composite hydrogel bead for controlled release of diclofenac sodium[J]. Carbohydrate Polymers, 2009, 78(4): 731−737. doi: 10.1016/j.carbpol.2009.06.010

    [84]

    喻媛, 董文瑞, 梁卫东. 低品位凹凸棒/壳聚糖气凝胶光热材料的制备及性能研究[J]. 化工新型材料, 2022, 50(1): 126−130.

    YU Y, DONG W R, LIANG W D. Study on preparation and property of low grade attapulgite/chitosangel photothermal material[J]. New Chemical Materials, 2022, 50(1): 126−130.

    [85]

    YANG D, SHI S L, XIONG L, et al. Paraffin/palygorskite composite phase change materials for thermal energy storage[J]. Solar Energy Materials and Solar Cells, 2016, 144: 228−234. doi: 10.1016/j.solmat.2015.09.002

    [86]

    WANG Y, SONG Y H, LI S, et al. Thermophysical properties of three-dimensional palygorskite based composite phase change materials[J]. Applied Clay Science, 2020, 184: 105367. doi: 10.1016/j.clay.2019.105367

    [87]

    王毅, 郑翰, 夏天东, 等. 制备工艺对SA/ATTP复合储热材料结构和性能的影响[J]. 土木建筑与环境工程, 2011, 33(6): 145−150.

    WANG Y, Zheng H, Xia T D, et al. Effect of fabrication technology on the performance and structure of stearic acid/attapulgite composite phase change materials[J]. Journal of Civil, Architectural and Environmental Engineering, 2011, 33(6): 145−150.

    [88]

    张建利. 甘肃临泽凹凸棒石的转白及应用研究[D]. 兰州: 兰州理工大学, 2020.

    ZHANG J L. Research on whitening and application of attapulgite from Linze of Gansu Province[D]. Lanzhou: Lanzhou University of Technology, 2020.

    [89]

    DING J J, HUANG D J, WANG W B, et al. Effect of removing coloring metal ions from the natural brick-red palygorskite on properties of alginate/palygorskite nanocomposite film[J]. International Journal of Biological Macromolecules, 2019, 122: 684−694. doi: 10.1016/j.ijbiomac.2018.10.218

    [90]

    LU Y S, WANG W B, WANG Q, et al. Effect of oxalic acid-leaching levels on structure, color and physico-chemical features of palygorskite[J]. Applied Clay Science, 2019, 183: 105301. doi: 10.1016/j.clay.2019.105301

    [91]

    LU Y S, WANG W B, XU J, et al. Solid-phase oxalic acid leaching of natural red palygorskite-rich clay: a solvent-free way to change color and properties[J]. Applied Clay Science, 2020, 198: 105848. doi: 10.1016/j.clay.2020.105848

    [92]

    何孟, 吕瑞, 宋绵新, 等. 甘肃凹凸棒土制备沸石及其催化性能研究[J]. 非金属矿, 2022, 45(2): 1−5. doi: 10.3969/j.issn.1000-8098.2022.02.001

    HE M, LV R, SONG M X, et al. Synthesis and catalytic performance of zeolite using attapulgite from Gansu[J]. Non-Metallic Mines, 2022, 45(2): 1−5. doi: 10.3969/j.issn.1000-8098.2022.02.001

    [93]

    王爱勤, 卢予沈, 牟斌, 等. 混维凹凸棒石黏土全矿物利用研究现状与展望[J]. 科学通报, 2022, 67: 1−14.

    WANG A Q, LU Y S, MU B, et al. Research status and prospects on overall mineral use of mixed-dimensional attapulgite clay[J]. Chinese Science Bulletin, 2022, 67: 1−14.

    [94]

    LU Y S, WANG A Q. From structure evolution of palygorskite to functional material: a review[J]. Microporous and Mesoporous Materials, 2022, 333: 111765. doi: 10.1016/j.micromeso.2022.111765

    [95]

    LU A H. Mineral evolution heralds a new era for mineralogy[J]. American Mineralogist, 2022, 107(7): 1217−1218. doi: 10.2138/am-2022-8414

  • 加载中

(8)

计量
  • 文章访问数:  358
  • PDF下载数:  63
  • 施引文献:  0
出版历程
收稿日期:  2022-10-28
刊出日期:  2023-02-15

目录