Effect of Muscovite, Tourmaline and Apatite on Slurry Rheological Property of Scheelite Flotation
-
摘要:
通过矿浆流变性测试、人工混合矿浮选试验和泡沫稳定性测量研究了白云母、电气石、磷灰石等3种常见伴生脉石矿物分别对白钨矿和石英人工混合矿矿浆流变性和白钨矿浮选指标的影响。流变测试表明:白云母在矿浆中会形成端面−层面和端面−端面结合的三维网状结构,具有较大的表观黏度,而电气石、磷灰石在矿浆中仅为简单的堆砌型结构,其黏度略有增加。浮选试验和泡沫稳定性测量表明:在白钨矿−白云母−石英的人工混合矿浮选体系中,随着白云母质量浓度的增大,其较高的黏度会使浮选泡沫的半衰期和最大高度增加,使得“二次富集”作用明显提高,浮选指标在一定范围内变好,但较高的矿浆黏度同时会抑制气泡和颗粒之间的碰撞以及气泡−颗粒聚集体的流动性,导致浮选指标变差;在白钨矿−电气石−石英的人工混合矿浮选体系中,随着电气石在水中溶解出的Fe3+、Mg2+、Ca2+等金属阳离子增加,抑制了白钨矿的浮选,使得精矿品位和回收率下降;在白钨矿−磷灰石−石英的人工混合矿浮选体系中,磷灰石溶解出的PO43−在白钨矿表面的吸附会导致矿物的表面转化,使得白钨矿和磷灰石表面性质相近,会恶化白钨矿浮选。此外,由于黏度增长缓慢,电气石和磷灰石的加入对泡沫稳定性几乎没有影响。研究可为实际矿石浮选过程中矿浆流变性的调控,以及白钨矿与脉石矿物的高效分离提供理论依据。
Abstract:The effects of three commonly associated gangue minerals, such as Muscovite, tourmaline and apatite, on the slurry rheological properties and scheelite flotation indexes of scheelite were studied by slurry rheological test, flotation test of artificial mixed ore and foam stability measurement. Rheological test showed that muscovite in the pulp would form a three-dimensional network structure of edge-face(EF) and edge-edge(EE) combination, which had a large apparent viscosity, while tourmaline and apatite in the pulp was only a simple pile structure, the viscosity was slightly increased. Flotation test and foam stability measurement showed that: In the artificial mixed flotation system of scheelite-muscovite-quartz, with the increase of mass concentration of muscovite, its higher viscosity would increase the half-life and maximum height of the flotation foam, so that the "secondary enrichment" effect was obviously improved, and the flotation index became better within a certain range. However, the higher pulp viscosity would inhibit the collision between bubbles and particles and the fluidity of bubble-particle aggregates, which led to the deterioration of flotation index. In the artificial mixed flotation system of scheelite-tourmaline-quartz, with the increase of metal cations such as Fe3+, Mg2+ and Ca2+ dissolved from tourmaline in water, the flotation of scheelite was inhibited, and the concentrate grade and recovery were reduced. In the artificial mixed flotation system of scheelite-apatite -quartz, adsorption of PO43− dissolved from apatite on scheelite surface would lead to surface conversion of minerals, which resulted in similar surface properties of scheelite and apatite, which would worsen the flotation of scheelite. In addition, the addition of tourmaline and apatite had little effect on the stability of foam due to the slow increase of viscosity. The research can provide theoretical basis for the control of slurry rheology and the efficient separation of scheelite and gangue minerals in the process of ore flotation.
-
Key words:
- scheelite /
- slurry rheology /
- foam stability /
- flotation /
- muscovite /
- tourmaline /
- apatite
-
-
[1] BOGER D V. Rheology and the resource industries[J]. Chemical Engineering Science, 2009, 64(22): 4525−4536. doi: 10.1016/j.ces.2009.03.007
[2] MUSTER T H, PRESTIDGE C A. Rheological investigations of sulphide mineral slurries[J]. Minerals Engineering, 1995, 8(12): 1541−1555. doi: 10.1016/0892-6875(95)00117-4
[3] PATRA P, BHAMBHABI T, NAGARAJ D R, et al. Impact of pulp rheological behavior on selective separation of Ni minerals from fibrous serpentine ores[J]. Colloids & Surfaces A Physicochemical & Engineering Aspects, 2012, 411: 24−26.
[4] ZHOU Z, SCALES P J, BOGER D V. Chemical and physical control of the rheology of concentrated metal oxide suspensions[J]. Chemical Engineering Science, 2001, 56(9): 2901−2920. doi: 10.1016/S0009-2509(00)00473-5
[5] FARROKHPAY S, NDLOVU B, BRADSHAW D. Behaviour of swelling clays versus non-swelling clays in flotation[J]. Minerals Engineering, 2016, 96-97: 59−66. doi: 10.1016/j.mineng.2016.04.011
[6] NDLOVU B, FORBES E, FARROKHPAY S, et al. A preliminary rheological classification of phyllosilicate group minerals[J]. Minerals Engineering, 2014, 55: 190−200. doi: 10.1016/j.mineng.2013.06.004
[7] BOYLU F, DINCER H, ATESOK G. Effect of coal particle size distribution, volume fraction and rank on the rheology of coal-water slurries[J]. Fuel Processing Technology, 2004, 85(4): 241−250. doi: 10.1016/S0378-3820(03)00198-X
[8] CRUZ N, PENG Y J, FARROKHPAY S, et al. Interactions of clay minerals in copper-gold flotation: Part 1-Rheological properties of clay mineral suspensions in the presence of flotation reagents[J]. Minerals Engineering, 2013, 50/51: 30−37. doi: 10.1016/j.mineng.2013.06.003
[9] CRUZ N, PENG Y J, WIGHTMAN E. Interactions of clay minerals in copper-gold flotation: Part 2-Influence of some calcium bearing gangue minerals on the rheological behaviour[J]. International Journal of Mineral Processing, 2015, 141: 51−60. doi: 10.1016/j.minpro.2015.06.012
[10] CRUZ N, PENG Y J, WIGHTMAN E. The interaction of pH modifiers with kaolinite in copper–gold flotation[J]. Minerals Engineering, 2015, 84: 27−33. doi: 10.1016/j.mineng.2015.09.019
[11] CRUZ N, PENG Y J, WIGHTMAN E. The interaction of clay minerals with gypsum and its effects on copper-gold flotation[J]. Minerals Engineering, 2015, 77: 121−130. doi: 10.1016/j.mineng.2015.03.010
[12] YAN L, ENGLERT A H, MASLIYAH J H, et al. Determination of anisotropic surface characteristics of different phyllosilicates by direct force measurements[J]. Langmuir, 2011, 27(21): 12996−13007. doi: 10.1021/la2027829
[13] NDLOVU B, BECKER M, FORBES E, et al. The influence of phyllosilicate mineralogy on the rheology of mineral slurries[J]. Minerals Engineering, 2011, 24(12): 1314−1322. doi: 10.1016/j.mineng.2011.05.008
[14] 孙伟, 胡岳华. 钨矿回收工艺研究进展[J]. 矿产保护与利用, 2000(1): 42−46. doi: 10.3969/j.issn.1001-0076.2000.01.012
SUN W, HU Y H. The status about research of wolfram-mineral-recovery-technology[J]. Conservation and Utilization of Mineral Resources, 2000(1): 42−46. doi: 10.3969/j.issn.1001-0076.2000.01.012
[15] 李小康, 张英, 管侦皓等. 白钨矿浮选药剂研究进展[J]. 矿产保护与利用, 2022, 42(2): 14−24.
LI X K, ZHANG Y, GUAN Z H, et al. Research progress of scheelite flotation reagents[J]. Conservation and Utilization of Mineral Resources, 2022, 42(2): 14−24.
[16] 龙涛, 陈伟. 调浆过程能量输入对微细粒白钨浮选矿浆流变特性的影响研究[J]. 矿冶工程, 2019, 39(5): 49−52+55. doi: 10.3969/j.issn.0253-6099.2019.05.013
LONG T, CHEN W. Effect of energy input in pulp-conditioning process on rheological properties of fine scheelite flotation pulp[J]. Mining and Metallurgical Engineering, 2019, 39(5): 49−52+55. doi: 10.3969/j.issn.0253-6099.2019.05.013
[17] CHEN W, CHEN F F, BU X Z, et al. A significant improvement of fine scheelite flotation through rheological control of flotation pulp by using garnet[J]. Minerals Engineering, 2019, 138(C): 257−266.
[18] 张福亚, 张跃军. 矿浆浓度对流变性的影响[J]. 有色金属(选矿部分), 2017(Z1): 118−112.
ZHANG F Y, ZHANG Y J. Effect of pulp concentration on rheology[J]. Nonferrous Metals(Mineral Processing Section), 2017(Z1): 118−112.
[19] LUCKHAM P F, ROSSI S. The colloidal and rheological properties of bentonite suspensions[J]. Advances in Colloid and Interface Science, 1999, 82(13): 43−92.
[20] YANG D, XIE L, BOBICKI E, et al. Probing anisotropic surface properties and interaction forces of chrysotile rods by atomic force microscopy and rheology[J]. Langmuir, 2014, 30(36): 10809−10817. doi: 10.1021/la5019373
[21] YAN L, MASLIYAH J H, XU Z. Understanding suspension rheology of anisotropically-charged platy minerals from direct interaction force measurement using AFM[J]. Current Opinion in Colloid & Interface Science, 2013, 18(2): 149−156.
[22] 许灿辉. 矿物浮选气泡速度和尺寸分布特征提取方法与应用[D]. 长沙: 中南大学, 2011.
XU C H. Bubble velocity measurement and size distribution estimation for mineral floatation process[D]. Changsha: Central South University, 2011.
[23] 任飞. 内蒙电气石特性、加工及利用研究[D]. 沈阳: 东北大学, 2005.
REN F. Studies on characteristics, processing and utilization of Inner Mongolian tourmaline[D]. Shenyang: Northeastern University, 2005.
[24] 杨飞, 周晓彤. 难免金属离子对白钨矿浮选的影响[J]. 材料研究与应用, 2017, 11(03): 192−196. doi: 10.3969/j.issn.1673-9981.2017.03.011
YANG F, ZHOU X T. Study on the influence of metal ions on flotability of scheelite[J]. Materials Research and Application, 2017, 11(03): 192−196. doi: 10.3969/j.issn.1673-9981.2017.03.011
[25] 任飞, 韩跃新, 印万忠, 等. 油酸钠浮选电气石的溶液化学分析[J]. 有色矿冶, 2005(S1): 158−159. doi: 10.3969/j.issn.1007-967X.2005.z1.066
REN F, HAN Y X, YIN W Z. Solution chemical analysis of sodium oleate flotation on tourmaline[J]. Non-Ferrous Mining and Metallurgy, 2005(S1): 158−159. doi: 10.3969/j.issn.1007-967X.2005.z1.066
[26] 许豪杰. 白钨矿和磷灰石的浮选分离及其机理研究[D]. 沈阳: 东北大学, 2015.
XU H J. Research on flotation separation of scheelite and apatite and its mechanism[D]. Shenyang: Northeastern University, 2015.
[27] ZHONG C H, WANG H H, FENG B, et al. Flotation separation of scheelite and apatite by polysaccharide depressant xanthan gum[J]. Minerals Engineering, 2021, 170: 107045. doi: 10.1016/j.mineng.2021.107045
[28] 郭贞强, 张芹, 朱应贤, 等. 油酸钠体系下浮选泡沫稳定性研究[J]. 矿产保护与利用, 2019, 39(4): 131−134,139.
GUO Z Q, ZHANG Q, ZHU Y X. Study on the stability of flotation foam in sodium oleate system[J]. Conservation and Utilization of Mineral Resources, 2019, 39(4): 131−134,139.
[29] 冯其明, 穆枭, 张国范. 浮选生产过程中的泡沫及消泡技术[J]. 矿产保护与利用, 2005(4): 31−35. doi: 10.3969/j.issn.1001-0076.2005.04.009
FENG Q M, MU X, ZHANG G F. Foaming and defoaming technology in flotation processes[J]. Conservation and Utilization of Mineral Resources, 2005(4): 31−35. doi: 10.3969/j.issn.1001-0076.2005.04.009
[30] 付亚峰, 印万忠, 姚金, 等. 绿泥石颗粒效应对泡沫稳定性的影响[J]. 中南大学学报(自然科学版), 2018, 49(8): 1857−1862.
FU Y F, YIN W Z, YAO J, et al. Study on stability of flotation foam influenced by particle effect of chlorite[J]. Journal of Central South University(Science and Technology), 2018, 49(8): 1857−1862.
-