Research on Leaching Lithium and Manganese from Waste Lithium Manganate Battery Cathode Materials with Deep Eutectic Solvent
-
摘要:
低共熔溶剂做为绿色溶剂在废旧锂电池有价组分回收领域研究受到人们日益关注,以废旧锰酸锂电池正极粉为对象,研究了盐酸胍和乳酸低共熔溶剂对锂和锰的浸出性能,考察了浸出温度、浸出液固比和浸出时间等条件对锂和锰的浸出率影响,研究结果表明:采用盐酸胍和乳酸摩尔比1∶2制备的低共熔溶剂,适宜的溶解条件为浸出液固体积质量比为10 mL/g,溶解温度为70 ℃,浸出时间为2 h,在此条件下锰酸锂正极粉中锂和锰的浸出率分别达到99.27%和99.20%。
Abstract:As a green solvent, the deep eutectic solvent has attracted increasing attention in the field of recycling valuable components of waste lithium batteries. In this paper, the waste lithium manganate battery cathode powder was taken as the object for lithium and manganese leaching using deep eutectic solvent of guanidine hydrochloride and lactic acid. The effects of leaching temperature, leaching liquid solid ratio and leaching time on the leaching rate of lithium and manganese were investigated. The results showed that the appropriate dissolution conditions were as follows: using deep eutectic solvent with the mole ratio of guanidine hydrochloride to lactic acid 1∶2, the volume mass ratio of leaching solution to solid was 10 mL/g, the dissolution temperature was 70 ℃, and the leaching time was 1 h. Under the appropriate dissolution conditions, the leaching rate of lithium and manganese in lithium manganate cathode powder reached to 99.27% and 99.20% respectively.
-
Key words:
- lithium manganate battery /
- deep eutectic solvent /
- leaching /
- lithium /
- manganate
-
-
表 1 锰酸锂正极粉全元素分析结果
Table 1. All element analysis results of lithium manganate cathode powder
/% 化学组分 CO2 Na2O MgO Al2O3 SiO2 P2O5 SO3 MnO2 Nb2O5 含量 3.12 0.209 0.140 0.333 0.295 0.040 0.881 93.80 1.10 表 2 锰酸锂正极粉主要化学组分
Table 2. Chemical components of lithium manganate cathode powder
/% 化学组分 Li Mn Al 含量 3.94 51.55 0.091 表 3 最佳条件验证试验结果
Table 3. Validation test results under optimal conditions
/% 试验次数 浸出率/% Li Mn 1 99.23 99.14 2 99.31 99.26 3 99.28 99.21 平均值 99.27 99.20 -
[1] 徐正震, 梁精龙, 李慧, 等. 废旧锂电池正极材料中有价金属的回收工艺研究进展[J]. 矿产综合利用, 2022(1): 119−122.
XU Z Z, LIANG J L, LI H, et al. Research progress of recovery process of valuable metals in cathode materials of waste lithium batteries[J]. Multipurpose Utilization of Mineral Resources, 2022(1): 119−122.
[2] 李金龙, 何亚群, 付元鹏, 等. 废弃锂离子电池正极材料酸浸出实验研究[J]. 矿产综合利用, 2020(2): 128. doi: 10.3969/j.issn.1000-6532.2020.02.023
LI J L, HE Y Q, FU Y P, et al. Study on leaching cathode materials of spent lithium-ion batteries[J]. Multipurpose Utilization of Mineral Resources, 2020(2): 128. doi: 10.3969/j.issn.1000-6532.2020.02.023
[3] 邱宏菊, 郝先东, 张艳琼, 等. 微波辅助废旧锂电池正极材料有价金属回收技术进展[J]. 矿产保护与利用, 2022, 42(3): 38−44.
QIU H J, HAO X D, ZHANG Y Q, et. al. Progress in microwave-assisted recovery of valuable metals from spent lithium battery cathode materials[J]. Conservation and Utilization of Mineral Resources, 2022, 42(3): 38−44.
[4] 胡国荣, 杜柯, 彭忠东. 锂离子电池正极材料: 原理、性能与生产工艺[M]. 北京: 化学工业出版社, 2017: 10.
HU G R, DU K, PENG Z D. Cathode materials for lithium ion batteries : Principle, properties and production process[M]. Beijing : Chemical Industry Press, 2017: 10.
[5] TANG X C, HUANG B Y, HE Y H. Phase transition of lithiated-spinel LiMn2O4 at high temperature[J]. Trans Nonferrous Met Soc China, 200, 16(9): 438-444.
[6] LISBONA D, SNEE T. A review of hazards associated with primary lithium and lithium-ion batteries[J]. Process Saf Environ, 2011, 89(6): 434−442. doi: 10.1016/j.psep.2011.06.022
[7] 江泉. 电动汽车锰酸锂电池中锰的回收和处理研究[J]. 中国锰业, 2016, 34(6): 148−152.
JIANG Q. Recovery and treatment of manganese in lithium battery from electric vehicles[J]. China's Manganese Industry, 2016, 34(6): 148−152.
[8] 刘银玲, 赵璐璐, 郭琳娜, 等. 维生素C溶解废旧锂离子电池正极材料锰酸锂的研究[J]. 南阳师范学院学报, 2015, 14(9): 27−31. doi: 10.3969/j.issn.1671-6132.2015.09.008
LIU Y L, ZHAO L L, GUO L N, et. al. Research on the dissolution conditions of waste lithium-ion battery anode material LiMn2O4 in vitamin C[J]. Journal of Nanyang Normal University, 2015, 14(9): 27−31. doi: 10.3969/j.issn.1671-6132.2015.09.008
[9] COBY J, TU W C, OLIVER L, et. al. Green and Sustainable Solvents in Chemical Processes[J]. Chem. Rev. 2018, 118, 747-800.
[10] ABBOTT A P, BOOTHBY D, CAPPER G, et al. Deep eutectic solvents formed between choline chloride and carboxylic acids: versatile alternatives to ionic liquids[J]. Journal of the American Chemical Society, 2004, 126(29): 9142−9147. doi: 10.1021/ja048266j
[11] 成洪业, 漆志文. 低共熔溶剂用于萃取分离的研究进展[J]. 化工进展, 2020, 39(12): 4896−4907.
CHENG H Y, QI Z W. Research progress of deep eutectic solvent for extractive separation[J]. Chemical Industry and Engineering Progress, 2020, 39(12): 4896−4907.
[12] 程明强, 汝娟坚, 华一新, 等. 低共熔溶剂在废旧锂离子电池正极材料回收中的研究进展[J]. 化工进展, 2022, 41(6): 3293−3305.
CHENG M Q, RU J J, HUA Y X, et. al. Progress of deep eutectic solvents in recovery of cathode materials from spent lithium ion batteries[J]. Chemical Industry and Engineering Progress, 2022, 41(6): 3293−3305.
[13] TRAN M K, RODRIGUES M T F, KATO K, et al. Deep eutectic solvents for cathode recycling of Li-ion batteries[J]. Nature Energy, 2019, 4(4): 339−345. doi: 10.1038/s41560-019-0368-4
[14] ROLDÁN-RUIZ M J, FERRER M L, GUTIÉRREZ M C, et al. Highly efficient p-toluenesulfonic acid-based deep-eutectic solvents for cathode recycling of Li-ion batteries[J]. ACS Sustainable Chemistry & Engineering, 2020, 8(14): 5437−5445.
[15] XU Z W, SHAO H S, ZHAO Q X, et. al. Use of Microwave-Assisted Deep Eutectic Solvents to Recycle Lithium Manganese Oxide from Li-Ion Batteries[J]. The Minerals, Metals & Materials Society, 2021, 73(7): 2104−2110.
[16] LIU C Y, YAN Q B, ZHANG X W, et. al. Efficient Recovery of End-of-Life NdFeB Permanent Magnets by Selective Leaching with Deep Eutectic Solvents[J]. Environ. Sci. Technol. 2020, 54, 1037: 0−10379.
[17] YUE D Y, JIA Y Z, YAO Y, et al. Structure and electrochemical behavior of ionic liquid analogue based on choline chloride and urea[J]. Electrochimica Acta, 2012, 65: 30−36. doi: 10.1016/j.electacta.2012.01.003
[18] WANG S B, ZHANG Z T, LU Z G, et al. A novel method for screening deep eutectic solvent to recycle the cathode of Li-ion batteries[J]. Green Chemistry, 2020, 22(14): 4473−4482. doi: 10.1039/D0GC00701C
-