Research Progress of Energy Saving and Consumption Reduction Technology of Ball Mills
-
摘要:
球磨机广泛应用于冶金矿山行业,磨矿作业的动力消耗与金属消耗较大,如何有效降低能耗与金属消耗是一项重要研究内容。主要从磨机自身结构改进、精确化装补球技术、耐磨材料制备技术三个方面进行综述。磨机自身结构改进主要包括以下措施:球磨机大型化、将边缘传动改为中心传动、将滑动轴承改为滚动轴承、改善研磨介质与衬板种类与形状。精确化装补球技术在我国矿山中应用广泛,均不同程度地降低了球磨机的电耗与球耗。耐磨材料制备技术主要围绕锰钢材料、铸铁材料、合金钢材料、双金属复合材料、磁性材料、橡胶材料的设计与制备进行了阐述,主要通过微合金化设计、热处理制度改进达到细化晶粒、转变组织的目的,提高材料的耐磨性,从而降低磨损率。
Abstract:Ball mill is widely used in metallurgical mining industry, grinding operation of power consumption and metal consumption is large, how to effectively reduce energy consumption and metal consumption is an important research content. This paper reviews the improvement of mill structure, the technology of precise ball make-up and the preparation of wear-resistant materials. The improvement of mill structure mainly includes the following measures: the ball mill should be enlarged, the edge drive should be changed to the center drive, the sliding bearing should be changed to the rolling bearing, and the grinding medium and lining plate types and shapes should be improved. Accurate ball make-up technology has been widely used in mines in China, which has reduced the power consumption and ball consumption of ball mills to varying degrees wear-resisting material preparation technology centered manganese steel material, cast iron, alloy steel materials, double metal composite materials, magnetic materials, rubber materials design and preparation, mainly through the design of micro alloying and heat treatment system improvement to achieve the purpose of refine grain, change organization, improve the wear resistance of materials, so as to reduce the wear rate.
-
-
能量分配 管磨机/% 三锥磨机
破碎矿石/%旋转磨机
石灰石粉碎/%三锥磨机
硫酸钙矿石/%实验室
小振动磨/%工业水泥/% 轴承与齿轮的摩擦 12.3 - - - 56~29 8.2~14.9 筒体放射的热 6.4 21.0 8.0 20.0 8~20 8.7~22.2 粉碎产品带走的热 47.6 26.0 18.0 37.0 18~34 42.7~71.6 空气带走的热 31.0 19.0 14.0 29.0 - 11.2~16.3 水蒸气带走的热 - 38.0 56.0 - - - 介质摩擦生热、振动、发声 3.0 - - - - - 理想的粉碎效率 0.6 - - - - 0.14~0.22 表 2 精确化装补球技术工业应用前后对比初验数据
Table 2. Comparison of preliminary data before and after industrial application of accurate ball make-up technology
应用矿山 应用前后 磨机型号 台时处理量/(t·h−1) 磨矿细度(−0.074 mm占比)/% 球耗/(kg·t−1) 电耗/(kW·h·t−1) 金平镍矿 应用前 Ф1.5 m×3.0 m 5.11 57.28 0.521 / 应用后 5.35 68.67 0.419 / 提高或降低 0.24 11.39 0.102 11.75% 大红山铜矿 应用前 Ф3.6 m×4.5 m 53.24 64.82 0.72 26.09 应用后 63.08 70.84 0.60 21.28 提高或降低 9.84 6.02 0.12 4.81% 应用前 Ф3.2 m×3.1 m 38.54 76.41 / / 狮子山铜矿 应用后 45.21 84.92 / / 提高或降低 6.67 8.51 11.16% 2.91% 应用前 Ф3.2 m×4.0 m 63.00 44.35 1.22 12.17 金翅岭金矿 应用后 68.00 51.51 0.96 10.96 提高或降低 5.00 7.16 0.26 1.21% 应用前 Ф4.8 m×7.0 m / 65.00 0.52 7.85 银山铜矿 应用后 / 68.00 0.50 7.30 提高或降低 / 3.00 0.02 0.55% -
[1] 陈勇, 宋永胜, 温建康, 等. 磨矿介质运动规律研究现状与发展趋势[J]. 世界有色金属, 2020(20): 1−4. doi: 10.3969/j.issn.1002-5065.2020.20.001
CHEN Y, SONG Y S, WEN J K, et al. Research status and development trend of grinding media movement law[J]. World Nonferrous Metals, 2020(20): 1−4. doi: 10.3969/j.issn.1002-5065.2020.20.001
[2] 李同清. 球磨机矿磨介质动力学行为研究[D]. 徐州: 中国矿业大学, 2018
LI T Q. Study on charge dynamic behaviour of ball mills[D]. Xuzhou: China University of Mining and Technology, 2018.
[3] 吴彩斌. 破碎统计力学原理及转移概率在装补球制度中的应用研究[D]. 昆明: 昆明理工大学, 2002.
WU C B. Application study about crushing statistic mechanics principle and transition probability on load-abbition ball system[D]. Kuming: Kunming University of Science and Technology, 2002.
[4] 段希祥, 曹亦俊. 球磨机介质工作理论与实践[M]. 冶金工业出版社, 1999.
DUAN X X, CAO Y J. Theory and practice of ball mill media work[M]. Metallurgical Industry Press, 1999
[5] 刘全军, 姜美光. 碎矿与磨矿技术发展及现状[J]. 云南冶金, 2012, 41(5): 21−28. doi: 10.3969/j.issn.1006-0308.2012.05.005
LIU Q J, JIANG M G. Technological development of ore crushing and grinding and their current situation[J]. Yunnan Metallurgy, 2012, 41(5): 21−28. doi: 10.3969/j.issn.1006-0308.2012.05.005
[6] 刘俊, 姬建钢, 陈松战. 磨矿装备技术发展趋势研究[J]. 矿山机械, 2019, 47(2): 1−6. doi: 10.3969/j.issn.1001-3954.2019.02.001
LIU J, JI J G, CHEN S Z. Research on development tendency of grinding mill technology[J]. Mining & Processing Equipment, 2019, 47(2): 1−6. doi: 10.3969/j.issn.1001-3954.2019.02.001
[7] 月琼. 世界最大球磨机在苏联使用[J]. 国外金属矿选矿, 1989(7): 49.
YU Q. The world's largest ball mill is used in the Soviet Union[J]. Metallic Ore Dressing Abroad, 1989(7): 49.
[8] 王春红, 姬建钢, 张晓, 等. φ7.9 m×13.6 m双驱溢流型球磨机[J]. 矿山机械, 2013, 41(7): 71−76. doi: 10.16816/j.cnki.ksjx.2013.07.019
WANG C H, JI J G, ZHANG X, et al. φ7.9 m×13.6 m double-drive overflow ball mill[J]. Mining & Processing Equipment, 2013, 41(7): 71−76. doi: 10.16816/j.cnki.ksjx.2013.07.019
[9] 孙羽生. 球磨机中滚动轴承替代滑动轴承的应用研究[D]. 哈尔滨: 哈尔滨工业大学, 2009.
SUN Y S. Application research of rolling bearing replacing plain bearing in ball mill[D]. Harbin: Harbin Institute of Technology, 2009.
[10] 杨和平, 冯刚, 李健, 等. 再论滚动轴承式球磨机节能降耗的可能性[J]. 金属材料与冶金工程, 2013, 41(5): 59−63. doi: 10.3969/j.issn.1005-6084.2013.05.014
YANG H P, FENG G, LI J, et al. Talking about probability of saving energy and dropping consumption for roll bearing ball grinding mill[J]. Metal Materials and Metallurgy Engineering, 2013, 41(5): 59−63. doi: 10.3969/j.issn.1005-6084.2013.05.014
[11] 杨和平, 李健, 李力, 等. 滚动轴承式球磨机节能效果探讨[C]//中国采选技术十年回顾与展望. 北京, 2012: 762-764.
YANG H P, LI J, LI L, et al. Discussion on energy saving effect of rolling bearing ball mill[C]//Review and Prospect of China's Mining and Beneficiation Technology in the past decade. Beijing, 2012: 762-764.
[12] 吕蒙. 球磨机“滑动轴承”改造过程及节能效益[J]. 中小企业管理与科技(下旬刊), 2013(3): 320−321.
LV M. Transformation process and energy saving benefit of ball mill "sliding bearing"[J]. Management & Technology of SME, 2013(3): 320−321.
[13] 杨和平. 球磨机使用滚动轴承代替滑动轴承[J]. 水泥, 2001(7): 8−11. doi: 10.3969/j.issn.1002-9877.2001.07.004
YANG H P. Ball mills use rolling bearings instead of plain bearings[J]. Cement, 2001(7): 8−11. doi: 10.3969/j.issn.1002-9877.2001.07.004
[14] 黄立成. 球磨机滑动轴承改滚动轴承应用[J]. 科技资讯, 2013(35): 66,68. doi: 10.16661/j.cnki.1672-3791.2013.35.014
HUANG L C. Ball mill sliding bearing to rolling bearing application[J]. Science & Technology Information, 2013(35): 66,68. doi: 10.16661/j.cnki.1672-3791.2013.35.014
[15] 马斌, 汤成龙, 芮凯. 滚动轴承球磨机在南京栖霞山铅锌矿的应用[C]//全国金属矿山采矿新技术学术研讨与技术交流会论文集. 马鞍山, 2007: 355-356, 376.
MA B, TANG C L, RUI K. Application of rolling bearing ball m in Nanjing Qixiashan Lead-zinc Mine[C]//Proceedings of the National Symposium on New Mining Technology in Metal Mines. Ma Anshan, 2007: 355-356, 376.
[16] Л. Н. Синелъникова, 王鸿翔. 衬板形状对球磨机工作效率的影响[J]. 有色矿山, 1985(10): 55−56,54.
Л. Н. Синелъникова, WANG H X. Effect of liner shape on ball mill efficiency[J]. China Mine Engineering, 1985(10): 55−56,54.
[17] 唐新民, 吴照银. 球磨机筒体衬板形状的理论探讨[J]. 矿山机械, 2005(1): 20−22,4.
TANG X M, WU Z Y. Theoretical discussion to shape of shell liner in ball mill[J]. Mining & Processing Equipment, 2005(1): 20−22,4.
[18] 李兴. 中心传动双仓溢流型球磨机改进[J]. 有色金属设计, 2015, 42(1): 34−38.
LI X. Improvement of center-driven overflow ball mill with double-wall partition[J]. Nonferrous Metals Design, 2015, 42(1): 34−38.
[19] 王裕龙, 季光, 胡延涛. 大型中心传动溢流型球磨机的研究[J]. 科技创新与应用, 2016(29): 114.
WANG Y L, JI G, HU Y T. Study on large center drive overflow ball mill[J]. Technology Innovation and Application, 2016(29): 114.
[20] 闫玲娣, 曹桂月, 古创国, 等. 中心传动干法球磨机安全保护装置的设计[J]. 矿山机械, 2016, 44(5): 46−48. doi: 10.16816/j.cnki.ksjx.2016.05.012
YAN L D, CAO G Y, GU C G, et al. Design of safety device for dry ball mill with central drive[J]. Mining & Processing Equipment, 2016, 44(5): 46−48. doi: 10.16816/j.cnki.ksjx.2016.05.012
[21] 李洪, 黄华礼. 中心传动球磨机在铅锌矿小选厂的应用[J]. 有色金属设计, 2018, 45(3): 68−70. doi: 10.3969/j.issn.1004-2660.2018.03.019
LI H, HUANG H L. Application of center-driven ball mill in small lead and zinc processing plant[J]. Nonferrous Metals Design, 2018, 45(3): 68−70. doi: 10.3969/j.issn.1004-2660.2018.03.019
[22] 钱翀. MQY4585中心传动球磨机的设计[J]. 有色设备, 2020, 34(4): 51−56. doi: 10.19611/j.cnki.cn11-2919/tg.2020.04.012
QIAN C. Design of MQY4585 central drive ball mill[J]. Nonferrous Metallurgical Equipment, 2020, 34(4): 51−56. doi: 10.19611/j.cnki.cn11-2919/tg.2020.04.012
[23] 谢敏雄, 梅治福. 黄金矿山大型球磨机综合节能研究及应用[J]. 黄金, 2014, 35(11): 53−57. doi: 10.11792/hj20141112
XIE M X, MEI Z F. Study on comprehensive energy saving of large-scale ball mills in gold mines and its application[J]. Gold, 2014, 35(11): 53−57. doi: 10.11792/hj20141112
[24] N S. LAMECK, K. K. KIANGI, M. H. MOYSEffects of grinding media shapes on load behaviour and mill power in a dry ball mill[J]. Minerals Engineering, 2006, 19(13): 1357−1361. doi: 10.1016/j.mineng.2006.01.005
[25] 李同清, 彭玉兴. 研磨介质形状对铁矿石磨矿动力学研究[J]. 有色金属(选矿部分), 2018(1): 84−89,99.
LI T Q, PENG Y X. Effect of grinding media shape on milling kinetics of iron ore particles[J]. Nonferrous Metals (Mineral Processing Section), 2018(1): 84−89,99.
[26] SHI F. Comparison of grinding media—cylpebs versus balls[J]. Minerals Engineering, 2004, 17(11): 1259−1268.
[27] 韩佳宏, 代淑娟, 张作金, 等. 钢锻作为磨矿介质的磨矿效果研究[J]. 矿山机械, 2017, 45(3): 38−41. doi: 10.3969/j.issn.1001-3954.2017.03.009
HAN J H, DAI S J, ZHANG Z J, et al. Study on grinding effects while steel forging as grinding medium[J]. Mining & Processing Equipment, 2017, 45(3): 38−41. doi: 10.3969/j.issn.1001-3954.2017.03.009
[28] 叶景胜, 廖宁宁, 吴志强, 等. 钢锻作细磨介质下的磨矿能耗与粒度分布特征[J]. 有色金属科学与工程, 2018, 9(6): 65−71. doi: 10.13264/j.cnki.ysjskx.2018.06.011
YE J S, LIAO N N, WU Z Q, et al. Grinding energy consumption and particle size distribution characteristics of steel forging under fine grinding medium[J]. Nonferrous Metals Science and Engineering, 2018, 9(6): 65−71. doi: 10.13264/j.cnki.ysjskx.2018.06.011
[29] 曹成超, 邵海龙, 严海军, 等. 钢锻磨矿介质在七角井铁矿细磨中的应用[J]. 现代矿业, 2020, 36(12): 112−113,115. doi: 10.3969/j.issn.1674-6082.2020.12.034
CAO C C, SHAO H L, YAN H J, et al. Application of steel forging grinding medium in qijiaojing iron ore fine grinding industry[J]. Modern Mining, 2020, 36(12): 112−113,115. doi: 10.3969/j.issn.1674-6082.2020.12.034
[30] 张庆丰, 王海霞, 张玉婷, 等. 司家营研山铁矿磨矿介质优化研究与实践[J]. 现代矿业, 2019, 35(7): 195−197. doi: 10.3969/j.issn.1674-6082.2019.07.054
ZHANG Q F, WANG H X, ZHANG Y T, et al. Research and practice on grinding medium optimization of Yanshan iron mine in Sijiaying[J]. Modern Mining, 2019, 35(7): 195−197. doi: 10.3969/j.issn.1674-6082.2019.07.054
[31] 高洋, 刘志斌, 杨德生, 等. 提高黄金选矿厂磨矿效率的半工业试验研究[J]. 矿冶, 2013, 22(1): 26-29.
GAO Y, LIU Z B, YANG D S, et al. Semi-industrial experimental study on improving grinding efficiency of gold concentrator [J]. Mining and Metallurgy, 2013, 22(1): 26-29.
[32] 金弢, 李若兰, 郭永杰. 钢锻在磷矿磨矿中的应用研究[J]. 化工矿物与加工, 2014, 43(10): 18−22,30.
JIN T, LI R L, GUO Y J. Application of forged steel in phosphate grinding[J]. Industrial Minerals & Processing, 2014, 43(10): 18−22,30.
[33] XIN F, WU C B, LIAO N N, et al. The first attempt of applying ceramic balls in industrial tumbling mill: A case study[J]. Minerals Engineering, 2022, 180: 107504. doi: 10.1016/j.mineng.2022.107504
[34] 吴志强, 方鑫, 童佳琪, 等. 纳米陶瓷球作细磨介质下的磨矿能耗与粒度分布特征[J]. 有色金属科学与工程, 2019, 10(5): 91−96. doi: 10.13264/j.cnki.ysjskx.2019.05.014
WU Z Q, FANG X, TONG J Q, et al. Grinding energy consumption and particle size distribution characteristics of ground products with the nano-ceramic ball as the fine grinding medium[J]. Nonferrous Metals Science and Engineering, 2019, 10(5): 91−96. doi: 10.13264/j.cnki.ysjskx.2019.05.014
[35] 丁伟敏. 探讨陶瓷研磨体生产工艺的节能降耗措施[J]. 广东建材, 2020, 36(7): 79−80,24.
DING W M. The measures of energy saving and consumption reduction in ceramic abrasive production process are discussed[J]. Guangdong Building Materials, 2020, 36(7): 79−80,24.
[36] 姚伟, 白晓卿, 侯四海. 纳米陶瓷球在VTM-300立磨机中的应用试验研究[J]. 中国钼业, 2020, 44(6): 46-49
YAO W, BAI X Q, HOU S H. Experimental study on application of nano ceramic ball in VTM-300 Vertical Mill, 2020, 44(6): 46-49.
[37] 蔡爱花, 张勇, 程新联, 等. 水泥磨换用陶瓷球的实践[J]. 中国水泥, 2019(9): 100−101. doi: 10.3969/j.issn.1671-8321.2019.09.025
CAI A H, ZHANG Y, CHONG X L, et al. Practice of replacement of ceramic ball by cement mill[J]. China Cement, 2019(9): 100−101. doi: 10.3969/j.issn.1671-8321.2019.09.025
[38] 韩彬, 莫峰, 贾素娥, 等. 纳米陶瓷球在复杂多金属矿细磨的应用研究[J]. 有色金属(选矿部分), 2019(4): 40−44.
HAN B, MO F, JIA S E, et al. Application of nanoceramic ball in fine grinding of complex polymetallic mines[J]. Nonferrous Metals (Mineral Processing Section), 2019(4): 40−44.
[39] 景宇, 徐国华. 球磨机陶瓷球与钢球混合替代研究及应用[J]. 铜业工程, 2021(3): 32−35. doi: 10.3969/j.issn.1009-3842.2021.03.009
JING Y, XU G H. Research and application of mixed replacement of ceramic ball and steel ball in ball mill[J]. Copper Engineering, 2021(3): 32−35. doi: 10.3969/j.issn.1009-3842.2021.03.009
[40] 赖俊全, 向子祥, 李雨晴, 等. 纳米陶瓷球作细磨介质下的磨矿动力学[J]. 有色金属科学与工程, 2021, 12(3): 100−105. doi: 10.13264/j.cnki.ysjskx.2021.03.013
LAI J Q, XIANG Z X, LI Y Q, et al. Grinding kinetics study of nano-ceramic spheres as fine grinding medium[J]. Nonferrous Metals Science and Engineering, 2021, 12(3): 100−105. doi: 10.13264/j.cnki.ysjskx.2021.03.013
[41] 徐怀浩. 纳米陶瓷球在金翅岭金矿立磨机的应用[J]. 黄金, 2021, 42(9): 81−84.
XU H H. Application of nano-ceramic balls in vertical mills of Jinchiling Gold Mine[J]. Gold, 2021, 42(9): 81−84.
[42] 张伟. 梅山铁矿φ2700×3600球磨机磁性衬板的应用[J]. 安徽工业大学学报(自然科学版), 2010, 27(S1): 140−143.
ZHANG W. Application of magneticling in grindingmill at Meishan iron mine[J]. Journal of Anhui University of Technology(Natural Science), 2010, 27(S1): 140−143.
[43] 周宏喜, 杨俊平, 袁树礼, 等. HM型磁性衬板在有色金属矿大型磨机中的应用[J]. 有色金属(选矿部分), 2018(2): 74−77.
ZHOU H X, YANG J P, YUAN S L, et al. Application of HM magnetic liner in large mill for non-ferrous metal[J]. Nonferrous Metals(Mineral Processing Section), 2018(2): 74−77.
[44] 徐连鹏, 佐太东, 魏明安, 等. 金属磁性衬板在鑫达金矿的应用[J]. 现代矿业, 2019, 35(3): 171−172,175. doi: 10.3969/j.issn.1674-6082.2019.03.049
XU L P, ZUO T D, WEI M A, et al. Application of metal magnetic liner in xinda gold mine[J]. Modern Mining, 2019, 35(3): 171−172,175. doi: 10.3969/j.issn.1674-6082.2019.03.049
[45] 王著. 金属矿山球磨机衬板研究和应用进展[J]. 山东工业技术, 2017(18): 243. doi: 10.16640/j.cnki.37-1222/t.2017.18.217
WANG Z. Research and application progress of ball mill liner in metal mine[J]. Journal of Shandong Industrial Technology, 2017(18): 243. doi: 10.16640/j.cnki.37-1222/t.2017.18.217
[46] 王勇. 金属磁性衬板在金山店铁矿的应用实践[J]. 现代矿业, 2013, 29(9): 149−150,186. doi: 10.3969/j.issn.1674-6082.2013.09.057
WANG Y. Application of magnetic metal lining plate in Jinshandian iron mine[J]. Modern Mining, 2013, 29(9): 149−150,186. doi: 10.3969/j.issn.1674-6082.2013.09.057
[47] 伏彦雄. 磁性衬板在铜冶炼渣选球磨机中的运用[J]. 现代制造技术与装备, 2019(10): 113−115. doi: 10.3969/j.issn.1673-5587.2019.10.044
FU Y X. Application of magnetic liner in copper smelting slag ball mill[J]. Modern Manufacturing Technology and Equipment, 2019(10): 113−115. doi: 10.3969/j.issn.1673-5587.2019.10.044
[48] 段希祥. 球磨机钢球尺寸的理论计算研究[J]. 中国科学, 1989(8): 856−863.
DUAN X X. Theoretical calculation of steel ball size of ball mill[J]. Scientia Sinica, 1989(8): 856−863.
[49] 段希祥. 球径半理论公式的修正研究[J]. 中国科学, 1997(6): 510−515.
DUAN X X. Study on the modification of spherical diameter half theory formula[J]. Scientia Sinica, 1997(6): 510−515.
[50] 肖庆飞. 两段磨矿精确化装补球方法的开发及应用研究[D]. 昆明: 昆明理工大学, 2008
XIAO Q F. Research on development and application of two-stage grinding precise ball-filling method[D]. KuMing: Kunming University of Science and Technology, 2008.
[51] 段希祥, 杜云鹤, 杨波, 等. 球磨机精确化装补球与能耗前移结合的增产节能方法: CN101036901A[P]. 2007-9-19.
DUAN X X, DU Y H, YANG B, et al. Accurate method for improving production and saving energy by combining ball lLoad and addition in mill and forward leading of energy consumption: CN101036901A[P]. 2007-9-19.
[52] 潘新潮, 段希祥, 范勇. 精确化装补球制度在金平镍矿磨矿中的应用[J]. 有色金属(选矿部分), 2003(5): 37−40.
PAN X C, DUAN X X, FAN Y. Application of precise ball make-up system in grinding of Jinping nickel ore[J]. Nonferrous Metals (Mineral Processing), 2003(5): 37−40.
[53] 王春, 马丽珍. 精确化装补球方法在大红山铜矿选矿厂的应用研究[J]. 云南冶金, 2005(1): 16−20. doi: 10.3969/j.issn.1006-0308.2005.01.003
WANG C, MA L Z. Application of precise filling and replenishment of balls for ball millin ore-dressing mill of Dahongsban copper mine[J]. Yunnan Metallurgy, 2005(1): 16−20. doi: 10.3969/j.issn.1006-0308.2005.01.003
[54] 高利坤, 陈云, 周平. 云南某铁矿磨矿工艺试验研究[J]. 矿冶工程, 2007(3): 45−48. doi: 10.3969/j.issn.0253-6099.2007.03.012
GAO L K, CHEN Y, ZHOU P. Study on the grinding parameters of an iron ore in Yunnan province[J]. Mining and Metallurgical Engineering, 2007(3): 45−48. doi: 10.3969/j.issn.0253-6099.2007.03.012
[55] 张仕才. 狮子山铜矿提高选矿处理能力的研究[J]. 采矿技术, 2008(1): 49−50. doi: 10.3969/j.issn.1671-2900.2008.01.017
ZHANG S C. Study on improving mineral processing capacity of Shizishan copper mine[J]. Mining Technology, 2008(1): 49−50. doi: 10.3969/j.issn.1671-2900.2008.01.017
[56] 肖庆飞, 李桂海, 石贵明, 等. 精确化装补球法在狮子山铜矿的应用[J]. 金属矿山, 2007(12): 68−71. doi: 10.3321/j.issn:1001-1250.2007.12.017
XIAO Q F, LI G H, SHI G M, et al. Application of accurate ball loading and addition in Shizishan copper mine[J]. Metal Mine, 2007(12): 68−71. doi: 10.3321/j.issn:1001-1250.2007.12.017
[57] 雷小莉, 李金泉, 徐忠敏, 等. 精确化装补球技术在金翅岭金矿选矿厂的应用[J]. 黄金科学技术, 2015, 23(6): 87−91. doi: 10.11872/j.issn.1005-2518.2015.06.087
LEI X L, LI J Q, XU Z M, et al. Application of the technology of accurate ball loading and addition in concentrating mill of Jinchiling gold mine[J]. Gold Science and Technology, 2015, 23(6): 87−91. doi: 10.11872/j.issn.1005-2518.2015.06.087
[58] 康怀斌, 肖庆飞, 秦洪训, 等. 精确化装补球方法在大尹格庄金矿中的应用研究[J]. 黄金, 2015, 36(6): 53−56. doi: 10.11792/hj201506013
KANG H B, XIAO Q F, QIN H X, et al. Study on the application of accurate ball loading and addition in Dayingezhuang gold mine[J]. Gold, 2015, 36(6): 53−56. doi: 10.11792/hj201506013
[59] 徐怀浩, 李进友. 大尹格庄金矿磨矿系统增产降耗的应用实践[J]. 黄金科学技术, 2017, 25(3): 116−120. doi: 10.11872/j.issn.1005-2518.2017.03.116
XU H H, LI J Y. Application practice of increasing production and reducing consumption in grinding system of Dayingezhuang gold mine[J]. Gold Science and Technology, 2017, 25(3): 116−120. doi: 10.11872/j.issn.1005-2518.2017.03.116
[60] 汪太平, 肖庆飞, 李博, 等. 精确化装补球制度在冬瓜山铜矿的应用研究[J]. 昆明理工大学学报(自然科学版), 2015, 40(4): 23−27. doi: 10.16112/j.cnki.53-1223/n.2015.04.005
WANG T P, XIAO Q F, LI B, et al. Application research of accurate ball loading and addition in Dongguashan copper mine[J]. Journal of Kunming University of Science and Technology(Natural Science Edition), 2015, 40(4): 23−27. doi: 10.16112/j.cnki.53-1223/n.2015.04.005
[61] 徐胜旗. 银山选矿厂球磨机精确化装补球方案与实践[J]. 湖南有色金属, 2021, 37(6): 17−19,74. doi: 10.3969/j.issn.1003-5540.2021.06.005
XU S Q. The plan and practice of ball mill accurate filling in Yinshan concentrator[J]. Hunan Nonferrous Metals, 2021, 37(6): 17−19,74. doi: 10.3969/j.issn.1003-5540.2021.06.005
[62] 魏明安, 武文建, 于蕾. 一种选矿厂球磨机初装球的等面积装补球方法. CN111085308 A[P]. 2020-5-1.
WEI M A, WU W J, YU L. The utility model relates to an equal area filling method for the initial ball of ball mill in a concentrator: CN111085308 A[P]. 2020-5-1.
[63] 江领培, 吴彩斌, 雷阿丽, 等. 纳米陶瓷球在某萤石粗精矿再磨中的试验研究[J]. 非金属矿, 2018, 41(3): 66−68. doi: 10.3969/j.issn.1000-8098.2018.03.022
JIANG L P, WU C B, LEI A L, et al. Using of the nano ceramic ball in regrinding of rough concentrate of the Fluorite[J]. Non-metallic Mines, 2018, 41(3): 66−68. doi: 10.3969/j.issn.1000-8098.2018.03.022
[64] 廖宁宁, 吴彩斌, 吴志强, 等. 纳米陶瓷球对铜硫矿磨矿和浮选的影响[J]. 有色金属工程, 2019, 9(1): 70−76. doi: 10.3969/j.issn.2095-1744.2019.01.012
LIAO N N, WU C B, WU Z Q, et al. Effect of nano ceramic ball on grinding and flotation in copper sulfur ore[J]. Nonferrous Metals Engineering, 2019, 9(1): 70−76. doi: 10.3969/j.issn.2095-1744.2019.01.012
[65] STALINSKII DV, AS RUDYUK, VK SOLENYI, et al. Improving the quality of steel grinding balls[J]. Steel in Translation, 2017, 47(2): 130−136. doi: 10.3103/S0967091217020115
[66] 郎洪明. 磨球的生产和选用现状及发展趋势[J]. 热加工工艺, 2010, 39(15): 4. doi: 10.14158/j.cnki.1001-3814.2010.15.056
LANG H M. Development trend of manufacture and selection of milling ball[J]. Hot Working Technology, 2010, 39(15): 4. doi: 10.14158/j.cnki.1001-3814.2010.15.056
[67] MI PASHECHKO, J MONTUSIEWICZ. Evaluation of the wear resistance of eutectic coatings of the Fe–Mn–C–B system alloyed by Si, Ni, and Cr using multi-criteria analysis[J]. Materials Science, 2012, 47(6): 813−821. . doi: 10.1007/s11003-012-9460-7
[68] TĘCZA G, GŁOWNIA J. Resistance to abrasive wear and volume fraction of carbides in cast high-manganese austenitic steel with composite structure[J]. Archives of Foundry Engineering, 2015.
[69] OLEKSANDR IVANOV, PAVLO PRYSYAZHNYUK, DMYTRO LUTSAK, et al. Improvement of abrasion resistance of production equipment wear parts by hardfacing with flux-cored wires containing boron carbide/metal powder reaction mixtures[J]. Management Systems in Production Engineering, 2020.
[70] 智海旭. 合金化处理对高锰钢衬板耐磨性影响的研究[D]. 南昌: 东华理工大学, 2020
ZHI H X. Study on the effect of alloying treatment on wear resistance of high manganese steel liner[D]. Nanchang: East China University of Technology, 2020.
[71] 涂斌. 超高锰钢耐磨衬板的制备工艺及组织性能研究[D]. 赣州: 江西理工大学, 2017
TU B. Study on preparation technology and microstructure properties of wear resistance lining plate of ultra-high manganese steel[D]. Ganzhou: Jiangxi University of Science and Technology, 2017.
[72] 张腾飞. 球磨机高锰钢衬板的成分与性能优化研究[D]. 北京: 北京交通大学, 2017
ZHANG T F. Optimization and study on composition and performance of high manganese steel liner for ball mill[D]. Beijing: Beijing Jiaotong University, 2017.
[73] GE S R, WANG Q L, WANG J L. The impact wear-resistance enhancement mechanism of medium manganese steel and its applications in mining machines[J]. Wear, 2017, 376-377: 1097−1104. doi: 10.1016/j.wear.2017.01.015
[74] ZHAO J L, YAN X I, SHI W, et al. Microstructure and mechanical properties of high manganese TRIP steel[J]. Journal of Iron and Steel Research, 2012, 19(4): 57−62. doi: 10.1016/S1006-706X(12)60088-0
[75] ATUL SAXENA, S. N. PRASAD, S. GOSWAMI, et al.Influence of austempering parameters on the microstructure and tensile properties of a medium carbon–manganese steel[J]. Materials Science and Engineering:a, 2006, 431(1): 53−58.
[76] XU H F, ZHAO J, CAO W Q, et al. Heat treatment effects on the microstructure and mechanical properties of a medium manganese steel (0.2C–5Mn)[J]. Materials Science and Engineering:a, 2012, 532: 435−442. doi: 10.1016/j.msea.2011.11.009
[77] K. D. TOZETTI, E. ALBERTIN, C. SCANDIANAbrasive size and load effects on the wear of a 19.9% chromium and 2.9% carbon cast iron[J]. Wear, 2017, 376-377: 46−53. doi: 10.1016/j.wear.2017.02.008
[78] 陈永泰, 邓军, 韩朝晖. W-Mn-V抗磨铸铁的合金化原理及磨球制造工艺[J]. 甘肃工业大学学报, 1998(2): 26−29.
CHEN Y T, DENG J, HAN C H. Investigation of alloying mechanism of W-Mn-V wear resistant cast iron and manufacturing process of grinding balls[J]. Journal of Gansu University of Technology, 1998(2): 26−29.
[79] 李卫. 高硬度280Cr25Mo2W3耐磨铸铁合金碳化物的研究[J]. 材料热处理学报, 2008(3): 10−13. doi: 10.13289/j.issn.1009-6264.2008.03.035
LI W. Study on carbides of high hardness wear resistant cast iron 280Cr25Mo2W3[J]. Transactions of Materials and Heat Treatment, 2008(3): 10−13. doi: 10.13289/j.issn.1009-6264.2008.03.035
[80] 王三军. 耐磨铸铁的研制及其耐磨性的试验研究[J]. 佳木斯大学学报(自然科学版), 2018, 36(1): 83−85.
WANG S J. The preparation of wear resistant cast iron and its experimental study on the wear resistance[J]. Journal of Jiamusi University (Natural Science Edition), 2018, 36(1): 83−85.
[81] 李晓林. 渗氮工艺对耐磨铸铁组织和硬度的影响[J]. 铸造技术, 2015, 36(12): 2873−2876. doi: 10.16410/j.issn1000-8365.2015.12.018
LI X L. Effect of nitriding process on microstructure and hardness of wear resistant cast iron[J]. Foundry Technology, 2015, 36(12): 2873−2876. doi: 10.16410/j.issn1000-8365.2015.12.018
[82] 柴增田, 刘春哲. 新型合金化高铬铸铁磨球的研究进展[J]. 铸造技术, 2017, 38(7): 1544−1546. doi: 10.16410/j.issn1000-8365.2017.07.004
CHAI Z T, LIU C Z. Research progress of alloying high-chromium cast iron grinding ball[J]. Foundry Technology, 2017, 38(7): 1544−1546. doi: 10.16410/j.issn1000-8365.2017.07.004
[83] 康沫狂, 贾虎生, 杨延清, 等. 新型系列准贝氏体钢[J]. 金属热处理, 1995(12): 3−5,23. doi: 10.13251/j.issn.0254-6051.1995.12.001
KANG M K, JIA H S, YANG Y Q, et al. New type meta-bainitic steel series[J]. Heat Treatment of Metals, 1995(12): 3−5,23. doi: 10.13251/j.issn.0254-6051.1995.12.001
[84] 杨延清, 陈彦, 康沫狂. 准贝氏体组织及新型系列准贝氏体钢[J]. 特殊钢, 1999(4): 37−39. doi: 10.3969/j.issn.1003-8620.1999.04.011
YANG Y Q, CHEN Y, KANG M K. Microstructure of meta bainite and new meta bainitic steel series[J]. Special Steel, 1999(4): 37−39. doi: 10.3969/j.issn.1003-8620.1999.04.011
[85] 方鸿生, 冯春, 郑燕康, 等. 新型Mn系空冷贝氏体钢的创制与发展[J]. 热处理, 2008(3): 2−19. doi: 10.3969/j.issn.1008-1690.2008.03.001
FANG H S, F C, ZHENG Y K, et al. Creation and development of novel mn series air cooled bainitic steels[J]. Heat Treatment, 2008(3): 2−19. doi: 10.3969/j.issn.1008-1690.2008.03.001
[86] 苏兴强, 周鲁生, 段其福. 金属磁性衬板应用进展[J]. 金属矿山, 2006(3): 14−17. doi: 10.3321/j.issn:1001-1250.2006.03.004
SU X Q, ZHOU L S, DUAN Q F. Review of application technology of hanma brand metal magnetic lining[J]. Metal Mine, 2006(3): 14−17. doi: 10.3321/j.issn:1001-1250.2006.03.004
[87] 刘忠伟, 王勇智, 邱伟, 等. 橡胶衬板在硫化铜镍矿磨矿上的应用[J]. 吉林地质, 2009, 28(4): 130−132. doi: 10.3969/j.issn.1001-2427.2009.04.039
LIU Z W, WANG Y Z, QIU W, et al. Application of rubber liner in grinding Cu-Ni sulfide ore[J]. Jilin Geology, 2009, 28(4): 130−132. doi: 10.3969/j.issn.1001-2427.2009.04.039
-