“双碳”目标下球磨机节能降耗技术研究进展

杨俊彦, 孙浩杰, 谷建国, 张圣东, 游世辉. “双碳”目标下球磨机节能降耗技术研究进展[J]. 矿产保护与利用, 2023, 43(1): 169-178. doi: 10.13779/j.cnki.issn1001-0076.2023.01.017
引用本文: 杨俊彦, 孙浩杰, 谷建国, 张圣东, 游世辉. “双碳”目标下球磨机节能降耗技术研究进展[J]. 矿产保护与利用, 2023, 43(1): 169-178. doi: 10.13779/j.cnki.issn1001-0076.2023.01.017
YANG Junyan, SUN Haojie, GU Jianguo, ZHANG Shengdong, YOU Shihui. Research Progress of Energy Saving and Consumption Reduction Technology of Ball Mills[J]. Conservation and Utilization of Mineral Resources, 2023, 43(1): 169-178. doi: 10.13779/j.cnki.issn1001-0076.2023.01.017
Citation: YANG Junyan, SUN Haojie, GU Jianguo, ZHANG Shengdong, YOU Shihui. Research Progress of Energy Saving and Consumption Reduction Technology of Ball Mills[J]. Conservation and Utilization of Mineral Resources, 2023, 43(1): 169-178. doi: 10.13779/j.cnki.issn1001-0076.2023.01.017

“双碳”目标下球磨机节能降耗技术研究进展

  • 基金项目: 枣庄学院博士科研启动基金项目(BS1020717);枣庄学院高层次人才团队建设经费项目(5010207);枣庄市科技发展计划项目(2020GX11)
详细信息
    作者简介: 杨俊彦(1986—),男,山东青岛人,博士,讲师,主要从事矿物综合利用研究,E-mail:yang8865139@163.com
    通讯作者: 游世辉(1962—),男,江西萍乡人,博士,教授,主要从事力学与矿物综合利用研究,E-mail:101434@uzz.edu.cn
  • 中图分类号: TD921+.4

Research Progress of Energy Saving and Consumption Reduction Technology of Ball Mills

More Information
  • 球磨机广泛应用于冶金矿山行业,磨矿作业的动力消耗与金属消耗较大,如何有效降低能耗与金属消耗是一项重要研究内容。主要从磨机自身结构改进、精确化装补球技术、耐磨材料制备技术三个方面进行综述。磨机自身结构改进主要包括以下措施:球磨机大型化、将边缘传动改为中心传动、将滑动轴承改为滚动轴承、改善研磨介质与衬板种类与形状。精确化装补球技术在我国矿山中应用广泛,均不同程度地降低了球磨机的电耗与球耗。耐磨材料制备技术主要围绕锰钢材料、铸铁材料、合金钢材料、双金属复合材料、磁性材料、橡胶材料的设计与制备进行了阐述,主要通过微合金化设计、热处理制度改进达到细化晶粒、转变组织的目的,提高材料的耐磨性,从而降低磨损率。

  • 加载中
  • 表 1  磨矿机的能量平衡[4]

    Table 1.  Energy balance of mill[4]

    能量分配管磨机/%三锥磨机
    破碎矿石/%
    旋转磨机
    石灰石粉碎/%
    三锥磨机
    硫酸钙矿石/%
    实验室
    小振动磨/%
    工业水泥/%
    轴承与齿轮的摩擦12.3---56~298.2~14.9
    筒体放射的热6.421.08.020.08~208.7~22.2
    粉碎产品带走的热47.626.018.037.018~3442.7~71.6
    空气带走的热31.019.014.029.0-11.2~16.3
    水蒸气带走的热-38.056.0---
    介质摩擦生热、振动、发声3.0-----
    理想的粉碎效率0.6----0.14~0.22
    下载: 导出CSV

    表 2  精确化装补球技术工业应用前后对比初验数据

    Table 2.  Comparison of preliminary data before and after industrial application of accurate ball make-up technology

    应用矿山应用前后磨机型号台时处理量/(t·h−1)磨矿细度(−0.074 mm占比)/%球耗/(kg·t−1)电耗/(kW·h·t−1)
    金平镍矿应用前Ф1.5 m×3.0 m5.1157.280.521/
    应用后5.3568.670.419/
    提高或降低0.2411.390.10211.75%
    大红山铜矿应用前Ф3.6 m×4.5 m53.2464.820.7226.09
    应用后63.0870.840.6021.28
    提高或降低9.846.020.124.81%
    应用前Ф3.2 m×3.1 m38.5476.41//
    狮子山铜矿应用后45.2184.92//
    提高或降低6.678.5111.16%2.91%
    应用前Ф3.2 m×4.0 m63.0044.351.2212.17
    金翅岭金矿应用后68.0051.510.9610.96
    提高或降低5.007.160.261.21%
    应用前Ф4.8 m×7.0 m/65.000.527.85
    银山铜矿应用后/68.000.507.30
     提高或降低/3.000.020.55%
    下载: 导出CSV
  • [1]

    陈勇, 宋永胜, 温建康, 等. 磨矿介质运动规律研究现状与发展趋势[J]. 世界有色金属, 2020(20): 1−4. doi: 10.3969/j.issn.1002-5065.2020.20.001

    CHEN Y, SONG Y S, WEN J K, et al. Research status and development trend of grinding media movement law[J]. World Nonferrous Metals, 2020(20): 1−4. doi: 10.3969/j.issn.1002-5065.2020.20.001

    [2]

    李同清. 球磨机矿磨介质动力学行为研究[D]. 徐州: 中国矿业大学, 2018

    LI T Q. Study on charge dynamic behaviour of ball mills[D]. Xuzhou: China University of Mining and Technology, 2018.

    [3]

    吴彩斌. 破碎统计力学原理及转移概率在装补球制度中的应用研究[D]. 昆明: 昆明理工大学, 2002.

    WU C B. Application study about crushing statistic mechanics principle and transition probability on load-abbition ball system[D]. Kuming: Kunming University of Science and Technology, 2002.

    [4]

    段希祥, 曹亦俊. 球磨机介质工作理论与实践[M]. 冶金工业出版社, 1999.

    DUAN X X, CAO Y J. Theory and practice of ball mill media work[M]. Metallurgical Industry Press, 1999

    [5]

    刘全军, 姜美光. 碎矿与磨矿技术发展及现状[J]. 云南冶金, 2012, 41(5): 21−28. doi: 10.3969/j.issn.1006-0308.2012.05.005

    LIU Q J, JIANG M G. Technological development of ore crushing and grinding and their current situation[J]. Yunnan Metallurgy, 2012, 41(5): 21−28. doi: 10.3969/j.issn.1006-0308.2012.05.005

    [6]

    刘俊, 姬建钢, 陈松战. 磨矿装备技术发展趋势研究[J]. 矿山机械, 2019, 47(2): 1−6. doi: 10.3969/j.issn.1001-3954.2019.02.001

    LIU J, JI J G, CHEN S Z. Research on development tendency of grinding mill technology[J]. Mining & Processing Equipment, 2019, 47(2): 1−6. doi: 10.3969/j.issn.1001-3954.2019.02.001

    [7]

    月琼. 世界最大球磨机在苏联使用[J]. 国外金属矿选矿, 1989(7): 49.

    YU Q. The world's largest ball mill is used in the Soviet Union[J]. Metallic Ore Dressing Abroad, 1989(7): 49.

    [8]

    王春红, 姬建钢, 张晓, 等. φ7.9 m×13.6 m双驱溢流型球磨机[J]. 矿山机械, 2013, 41(7): 71−76. doi: 10.16816/j.cnki.ksjx.2013.07.019

    WANG C H, JI J G, ZHANG X, et al. φ7.9 m×13.6 m double-drive overflow ball mill[J]. Mining & Processing Equipment, 2013, 41(7): 71−76. doi: 10.16816/j.cnki.ksjx.2013.07.019

    [9]

    孙羽生. 球磨机中滚动轴承替代滑动轴承的应用研究[D]. 哈尔滨: 哈尔滨工业大学, 2009.

    SUN Y S. Application research of rolling bearing replacing plain bearing in ball mill[D]. Harbin: Harbin Institute of Technology, 2009.

    [10]

    杨和平, 冯刚, 李健, 等. 再论滚动轴承式球磨机节能降耗的可能性[J]. 金属材料与冶金工程, 2013, 41(5): 59−63. doi: 10.3969/j.issn.1005-6084.2013.05.014

    YANG H P, FENG G, LI J, et al. Talking about probability of saving energy and dropping consumption for roll bearing ball grinding mill[J]. Metal Materials and Metallurgy Engineering, 2013, 41(5): 59−63. doi: 10.3969/j.issn.1005-6084.2013.05.014

    [11]

    杨和平, 李健, 李力, 等. 滚动轴承式球磨机节能效果探讨[C]//中国采选技术十年回顾与展望. 北京, 2012: 762-764.

    YANG H P, LI J, LI L, et al. Discussion on energy saving effect of rolling bearing ball mill[C]//Review and Prospect of China's Mining and Beneficiation Technology in the past decade. Beijing, 2012: 762-764.

    [12]

    吕蒙. 球磨机“滑动轴承”改造过程及节能效益[J]. 中小企业管理与科技(下旬刊), 2013(3): 320−321.

    LV M. Transformation process and energy saving benefit of ball mill "sliding bearing"[J]. Management & Technology of SME, 2013(3): 320−321.

    [13]

    杨和平. 球磨机使用滚动轴承代替滑动轴承[J]. 水泥, 2001(7): 8−11. doi: 10.3969/j.issn.1002-9877.2001.07.004

    YANG H P. Ball mills use rolling bearings instead of plain bearings[J]. Cement, 2001(7): 8−11. doi: 10.3969/j.issn.1002-9877.2001.07.004

    [14]

    黄立成. 球磨机滑动轴承改滚动轴承应用[J]. 科技资讯, 2013(35): 66,68. doi: 10.16661/j.cnki.1672-3791.2013.35.014

    HUANG L C. Ball mill sliding bearing to rolling bearing application[J]. Science & Technology Information, 2013(35): 66,68. doi: 10.16661/j.cnki.1672-3791.2013.35.014

    [15]

    马斌, 汤成龙, 芮凯. 滚动轴承球磨机在南京栖霞山铅锌矿的应用[C]//全国金属矿山采矿新技术学术研讨与技术交流会论文集. 马鞍山, 2007: 355-356, 376.

    MA B, TANG C L, RUI K. Application of rolling bearing ball m in Nanjing Qixiashan Lead-zinc Mine[C]//Proceedings of the National Symposium on New Mining Technology in Metal Mines. Ma Anshan, 2007: 355-356, 376.

    [16]

    Л. Н. Синелъникова, 王鸿翔. 衬板形状对球磨机工作效率的影响[J]. 有色矿山, 1985(10): 55−56,54.

    Л. Н. Синелъникова, WANG H X. Effect of liner shape on ball mill efficiency[J]. China Mine Engineering, 1985(10): 55−56,54.

    [17]

    唐新民, 吴照银. 球磨机筒体衬板形状的理论探讨[J]. 矿山机械, 2005(1): 20−22,4.

    TANG X M, WU Z Y. Theoretical discussion to shape of shell liner in ball mill[J]. Mining & Processing Equipment, 2005(1): 20−22,4.

    [18]

    李兴. 中心传动双仓溢流型球磨机改进[J]. 有色金属设计, 2015, 42(1): 34−38.

    LI X. Improvement of center-driven overflow ball mill with double-wall partition[J]. Nonferrous Metals Design, 2015, 42(1): 34−38.

    [19]

    王裕龙, 季光, 胡延涛. 大型中心传动溢流型球磨机的研究[J]. 科技创新与应用, 2016(29): 114.

    WANG Y L, JI G, HU Y T. Study on large center drive overflow ball mill[J]. Technology Innovation and Application, 2016(29): 114.

    [20]

    闫玲娣, 曹桂月, 古创国, 等. 中心传动干法球磨机安全保护装置的设计[J]. 矿山机械, 2016, 44(5): 46−48. doi: 10.16816/j.cnki.ksjx.2016.05.012

    YAN L D, CAO G Y, GU C G, et al. Design of safety device for dry ball mill with central drive[J]. Mining & Processing Equipment, 2016, 44(5): 46−48. doi: 10.16816/j.cnki.ksjx.2016.05.012

    [21]

    李洪, 黄华礼. 中心传动球磨机在铅锌矿小选厂的应用[J]. 有色金属设计, 2018, 45(3): 68−70. doi: 10.3969/j.issn.1004-2660.2018.03.019

    LI H, HUANG H L. Application of center-driven ball mill in small lead and zinc processing plant[J]. Nonferrous Metals Design, 2018, 45(3): 68−70. doi: 10.3969/j.issn.1004-2660.2018.03.019

    [22]

    钱翀. MQY4585中心传动球磨机的设计[J]. 有色设备, 2020, 34(4): 51−56. doi: 10.19611/j.cnki.cn11-2919/tg.2020.04.012

    QIAN C. Design of MQY4585 central drive ball mill[J]. Nonferrous Metallurgical Equipment, 2020, 34(4): 51−56. doi: 10.19611/j.cnki.cn11-2919/tg.2020.04.012

    [23]

    谢敏雄, 梅治福. 黄金矿山大型球磨机综合节能研究及应用[J]. 黄金, 2014, 35(11): 53−57. doi: 10.11792/hj20141112

    XIE M X, MEI Z F. Study on comprehensive energy saving of large-scale ball mills in gold mines and its application[J]. Gold, 2014, 35(11): 53−57. doi: 10.11792/hj20141112

    [24]

    N S. LAMECK, K. K. KIANGI, M. H. MOYSEffects of grinding media shapes on load behaviour and mill power in a dry ball mill[J]. Minerals Engineering, 2006, 19(13): 1357−1361. doi: 10.1016/j.mineng.2006.01.005

    [25]

    李同清, 彭玉兴. 研磨介质形状对铁矿石磨矿动力学研究[J]. 有色金属(选矿部分), 2018(1): 84−89,99.

    LI T Q, PENG Y X. Effect of grinding media shape on milling kinetics of iron ore particles[J]. Nonferrous Metals (Mineral Processing Section), 2018(1): 84−89,99.

    [26]

    SHI F. Comparison of grinding media—cylpebs versus balls[J]. Minerals Engineering, 2004, 17(11): 1259−1268.

    [27]

    韩佳宏, 代淑娟, 张作金, 等. 钢锻作为磨矿介质的磨矿效果研究[J]. 矿山机械, 2017, 45(3): 38−41. doi: 10.3969/j.issn.1001-3954.2017.03.009

    HAN J H, DAI S J, ZHANG Z J, et al. Study on grinding effects while steel forging as grinding medium[J]. Mining & Processing Equipment, 2017, 45(3): 38−41. doi: 10.3969/j.issn.1001-3954.2017.03.009

    [28]

    叶景胜, 廖宁宁, 吴志强, 等. 钢锻作细磨介质下的磨矿能耗与粒度分布特征[J]. 有色金属科学与工程, 2018, 9(6): 65−71. doi: 10.13264/j.cnki.ysjskx.2018.06.011

    YE J S, LIAO N N, WU Z Q, et al. Grinding energy consumption and particle size distribution characteristics of steel forging under fine grinding medium[J]. Nonferrous Metals Science and Engineering, 2018, 9(6): 65−71. doi: 10.13264/j.cnki.ysjskx.2018.06.011

    [29]

    曹成超, 邵海龙, 严海军, 等. 钢锻磨矿介质在七角井铁矿细磨中的应用[J]. 现代矿业, 2020, 36(12): 112−113,115. doi: 10.3969/j.issn.1674-6082.2020.12.034

    CAO C C, SHAO H L, YAN H J, et al. Application of steel forging grinding medium in qijiaojing iron ore fine grinding industry[J]. Modern Mining, 2020, 36(12): 112−113,115. doi: 10.3969/j.issn.1674-6082.2020.12.034

    [30]

    张庆丰, 王海霞, 张玉婷, 等. 司家营研山铁矿磨矿介质优化研究与实践[J]. 现代矿业, 2019, 35(7): 195−197. doi: 10.3969/j.issn.1674-6082.2019.07.054

    ZHANG Q F, WANG H X, ZHANG Y T, et al. Research and practice on grinding medium optimization of Yanshan iron mine in Sijiaying[J]. Modern Mining, 2019, 35(7): 195−197. doi: 10.3969/j.issn.1674-6082.2019.07.054

    [31]

    高洋, 刘志斌, 杨德生, 等. 提高黄金选矿厂磨矿效率的半工业试验研究[J]. 矿冶, 2013, 22(1): 26-29.

    GAO Y, LIU Z B, YANG D S, et al. Semi-industrial experimental study on improving grinding efficiency of gold concentrator [J]. Mining and Metallurgy, 2013, 22(1): 26-29.

    [32]

    金弢, 李若兰, 郭永杰. 钢锻在磷矿磨矿中的应用研究[J]. 化工矿物与加工, 2014, 43(10): 18−22,30.

    JIN T, LI R L, GUO Y J. Application of forged steel in phosphate grinding[J]. Industrial Minerals & Processing, 2014, 43(10): 18−22,30.

    [33]

    XIN F, WU C B, LIAO N N, et al. The first attempt of applying ceramic balls in industrial tumbling mill: A case study[J]. Minerals Engineering, 2022, 180: 107504. doi: 10.1016/j.mineng.2022.107504

    [34]

    吴志强, 方鑫, 童佳琪, 等. 纳米陶瓷球作细磨介质下的磨矿能耗与粒度分布特征[J]. 有色金属科学与工程, 2019, 10(5): 91−96. doi: 10.13264/j.cnki.ysjskx.2019.05.014

    WU Z Q, FANG X, TONG J Q, et al. Grinding energy consumption and particle size distribution characteristics of ground products with the nano-ceramic ball as the fine grinding medium[J]. Nonferrous Metals Science and Engineering, 2019, 10(5): 91−96. doi: 10.13264/j.cnki.ysjskx.2019.05.014

    [35]

    丁伟敏. 探讨陶瓷研磨体生产工艺的节能降耗措施[J]. 广东建材, 2020, 36(7): 79−80,24.

    DING W M. The measures of energy saving and consumption reduction in ceramic abrasive production process are discussed[J]. Guangdong Building Materials, 2020, 36(7): 79−80,24.

    [36]

    姚伟, 白晓卿, 侯四海. 纳米陶瓷球在VTM-300立磨机中的应用试验研究[J]. 中国钼业, 2020, 44(6): 46-49

    YAO W, BAI X Q, HOU S H. Experimental study on application of nano ceramic ball in VTM-300 Vertical Mill, 2020, 44(6): 46-49.

    [37]

    蔡爱花, 张勇, 程新联, 等. 水泥磨换用陶瓷球的实践[J]. 中国水泥, 2019(9): 100−101. doi: 10.3969/j.issn.1671-8321.2019.09.025

    CAI A H, ZHANG Y, CHONG X L, et al. Practice of replacement of ceramic ball by cement mill[J]. China Cement, 2019(9): 100−101. doi: 10.3969/j.issn.1671-8321.2019.09.025

    [38]

    韩彬, 莫峰, 贾素娥, 等. 纳米陶瓷球在复杂多金属矿细磨的应用研究[J]. 有色金属(选矿部分), 2019(4): 40−44.

    HAN B, MO F, JIA S E, et al. Application of nanoceramic ball in fine grinding of complex polymetallic mines[J]. Nonferrous Metals (Mineral Processing Section), 2019(4): 40−44.

    [39]

    景宇, 徐国华. 球磨机陶瓷球与钢球混合替代研究及应用[J]. 铜业工程, 2021(3): 32−35. doi: 10.3969/j.issn.1009-3842.2021.03.009

    JING Y, XU G H. Research and application of mixed replacement of ceramic ball and steel ball in ball mill[J]. Copper Engineering, 2021(3): 32−35. doi: 10.3969/j.issn.1009-3842.2021.03.009

    [40]

    赖俊全, 向子祥, 李雨晴, 等. 纳米陶瓷球作细磨介质下的磨矿动力学[J]. 有色金属科学与工程, 2021, 12(3): 100−105. doi: 10.13264/j.cnki.ysjskx.2021.03.013

    LAI J Q, XIANG Z X, LI Y Q, et al. Grinding kinetics study of nano-ceramic spheres as fine grinding medium[J]. Nonferrous Metals Science and Engineering, 2021, 12(3): 100−105. doi: 10.13264/j.cnki.ysjskx.2021.03.013

    [41]

    徐怀浩. 纳米陶瓷球在金翅岭金矿立磨机的应用[J]. 黄金, 2021, 42(9): 81−84.

    XU H H. Application of nano-ceramic balls in vertical mills of Jinchiling Gold Mine[J]. Gold, 2021, 42(9): 81−84.

    [42]

    张伟. 梅山铁矿φ2700×3600球磨机磁性衬板的应用[J]. 安徽工业大学学报(自然科学版), 2010, 27(S1): 140−143.

    ZHANG W. Application of magneticling in grindingmill at Meishan iron mine[J]. Journal of Anhui University of Technology(Natural Science), 2010, 27(S1): 140−143.

    [43]

    周宏喜, 杨俊平, 袁树礼, 等. HM型磁性衬板在有色金属矿大型磨机中的应用[J]. 有色金属(选矿部分), 2018(2): 74−77.

    ZHOU H X, YANG J P, YUAN S L, et al. Application of HM magnetic liner in large mill for non-ferrous metal[J]. Nonferrous Metals(Mineral Processing Section), 2018(2): 74−77.

    [44]

    徐连鹏, 佐太东, 魏明安, 等. 金属磁性衬板在鑫达金矿的应用[J]. 现代矿业, 2019, 35(3): 171−172,175. doi: 10.3969/j.issn.1674-6082.2019.03.049

    XU L P, ZUO T D, WEI M A, et al. Application of metal magnetic liner in xinda gold mine[J]. Modern Mining, 2019, 35(3): 171−172,175. doi: 10.3969/j.issn.1674-6082.2019.03.049

    [45]

    王著. 金属矿山球磨机衬板研究和应用进展[J]. 山东工业技术, 2017(18): 243. doi: 10.16640/j.cnki.37-1222/t.2017.18.217

    WANG Z. Research and application progress of ball mill liner in metal mine[J]. Journal of Shandong Industrial Technology, 2017(18): 243. doi: 10.16640/j.cnki.37-1222/t.2017.18.217

    [46]

    王勇. 金属磁性衬板在金山店铁矿的应用实践[J]. 现代矿业, 2013, 29(9): 149−150,186. doi: 10.3969/j.issn.1674-6082.2013.09.057

    WANG Y. Application of magnetic metal lining plate in Jinshandian iron mine[J]. Modern Mining, 2013, 29(9): 149−150,186. doi: 10.3969/j.issn.1674-6082.2013.09.057

    [47]

    伏彦雄. 磁性衬板在铜冶炼渣选球磨机中的运用[J]. 现代制造技术与装备, 2019(10): 113−115. doi: 10.3969/j.issn.1673-5587.2019.10.044

    FU Y X. Application of magnetic liner in copper smelting slag ball mill[J]. Modern Manufacturing Technology and Equipment, 2019(10): 113−115. doi: 10.3969/j.issn.1673-5587.2019.10.044

    [48]

    段希祥. 球磨机钢球尺寸的理论计算研究[J]. 中国科学, 1989(8): 856−863.

    DUAN X X. Theoretical calculation of steel ball size of ball mill[J]. Scientia Sinica, 1989(8): 856−863.

    [49]

    段希祥. 球径半理论公式的修正研究[J]. 中国科学, 1997(6): 510−515.

    DUAN X X. Study on the modification of spherical diameter half theory formula[J]. Scientia Sinica, 1997(6): 510−515.

    [50]

    肖庆飞. 两段磨矿精确化装补球方法的开发及应用研究[D]. 昆明: 昆明理工大学, 2008

    XIAO Q F. Research on development and application of two-stage grinding precise ball-filling method[D]. KuMing: Kunming University of Science and Technology, 2008.

    [51]

    段希祥, 杜云鹤, 杨波, 等. 球磨机精确化装补球与能耗前移结合的增产节能方法: CN101036901A[P]. 2007-9-19.

    DUAN X X, DU Y H, YANG B, et al. Accurate method for improving production and saving energy by combining ball lLoad and addition in mill and forward leading of energy consumption: CN101036901A[P]. 2007-9-19.

    [52]

    潘新潮, 段希祥, 范勇. 精确化装补球制度在金平镍矿磨矿中的应用[J]. 有色金属(选矿部分), 2003(5): 37−40.

    PAN X C, DUAN X X, FAN Y. Application of precise ball make-up system in grinding of Jinping nickel ore[J]. Nonferrous Metals (Mineral Processing), 2003(5): 37−40.

    [53]

    王春, 马丽珍. 精确化装补球方法在大红山铜矿选矿厂的应用研究[J]. 云南冶金, 2005(1): 16−20. doi: 10.3969/j.issn.1006-0308.2005.01.003

    WANG C, MA L Z. Application of precise filling and replenishment of balls for ball millin ore-dressing mill of Dahongsban copper mine[J]. Yunnan Metallurgy, 2005(1): 16−20. doi: 10.3969/j.issn.1006-0308.2005.01.003

    [54]

    高利坤, 陈云, 周平. 云南某铁矿磨矿工艺试验研究[J]. 矿冶工程, 2007(3): 45−48. doi: 10.3969/j.issn.0253-6099.2007.03.012

    GAO L K, CHEN Y, ZHOU P. Study on the grinding parameters of an iron ore in Yunnan province[J]. Mining and Metallurgical Engineering, 2007(3): 45−48. doi: 10.3969/j.issn.0253-6099.2007.03.012

    [55]

    张仕才. 狮子山铜矿提高选矿处理能力的研究[J]. 采矿技术, 2008(1): 49−50. doi: 10.3969/j.issn.1671-2900.2008.01.017

    ZHANG S C. Study on improving mineral processing capacity of Shizishan copper mine[J]. Mining Technology, 2008(1): 49−50. doi: 10.3969/j.issn.1671-2900.2008.01.017

    [56]

    肖庆飞, 李桂海, 石贵明, 等. 精确化装补球法在狮子山铜矿的应用[J]. 金属矿山, 2007(12): 68−71. doi: 10.3321/j.issn:1001-1250.2007.12.017

    XIAO Q F, LI G H, SHI G M, et al. Application of accurate ball loading and addition in Shizishan copper mine[J]. Metal Mine, 2007(12): 68−71. doi: 10.3321/j.issn:1001-1250.2007.12.017

    [57]

    雷小莉, 李金泉, 徐忠敏, 等. 精确化装补球技术在金翅岭金矿选矿厂的应用[J]. 黄金科学技术, 2015, 23(6): 87−91. doi: 10.11872/j.issn.1005-2518.2015.06.087

    LEI X L, LI J Q, XU Z M, et al. Application of the technology of accurate ball loading and addition in concentrating mill of Jinchiling gold mine[J]. Gold Science and Technology, 2015, 23(6): 87−91. doi: 10.11872/j.issn.1005-2518.2015.06.087

    [58]

    康怀斌, 肖庆飞, 秦洪训, 等. 精确化装补球方法在大尹格庄金矿中的应用研究[J]. 黄金, 2015, 36(6): 53−56. doi: 10.11792/hj201506013

    KANG H B, XIAO Q F, QIN H X, et al. Study on the application of accurate ball loading and addition in Dayingezhuang gold mine[J]. Gold, 2015, 36(6): 53−56. doi: 10.11792/hj201506013

    [59]

    徐怀浩, 李进友. 大尹格庄金矿磨矿系统增产降耗的应用实践[J]. 黄金科学技术, 2017, 25(3): 116−120. doi: 10.11872/j.issn.1005-2518.2017.03.116

    XU H H, LI J Y. Application practice of increasing production and reducing consumption in grinding system of Dayingezhuang gold mine[J]. Gold Science and Technology, 2017, 25(3): 116−120. doi: 10.11872/j.issn.1005-2518.2017.03.116

    [60]

    汪太平, 肖庆飞, 李博, 等. 精确化装补球制度在冬瓜山铜矿的应用研究[J]. 昆明理工大学学报(自然科学版), 2015, 40(4): 23−27. doi: 10.16112/j.cnki.53-1223/n.2015.04.005

    WANG T P, XIAO Q F, LI B, et al. Application research of accurate ball loading and addition in Dongguashan copper mine[J]. Journal of Kunming University of Science and Technology(Natural Science Edition), 2015, 40(4): 23−27. doi: 10.16112/j.cnki.53-1223/n.2015.04.005

    [61]

    徐胜旗. 银山选矿厂球磨机精确化装补球方案与实践[J]. 湖南有色金属, 2021, 37(6): 17−19,74. doi: 10.3969/j.issn.1003-5540.2021.06.005

    XU S Q. The plan and practice of ball mill accurate filling in Yinshan concentrator[J]. Hunan Nonferrous Metals, 2021, 37(6): 17−19,74. doi: 10.3969/j.issn.1003-5540.2021.06.005

    [62]

    魏明安, 武文建, 于蕾. 一种选矿厂球磨机初装球的等面积装补球方法. CN111085308 A[P]. 2020-5-1.

    WEI M A, WU W J, YU L. The utility model relates to an equal area filling method for the initial ball of ball mill in a concentrator: CN111085308 A[P]. 2020-5-1.

    [63]

    江领培, 吴彩斌, 雷阿丽, 等. 纳米陶瓷球在某萤石粗精矿再磨中的试验研究[J]. 非金属矿, 2018, 41(3): 66−68. doi: 10.3969/j.issn.1000-8098.2018.03.022

    JIANG L P, WU C B, LEI A L, et al. Using of the nano ceramic ball in regrinding of rough concentrate of the Fluorite[J]. Non-metallic Mines, 2018, 41(3): 66−68. doi: 10.3969/j.issn.1000-8098.2018.03.022

    [64]

    廖宁宁, 吴彩斌, 吴志强, 等. 纳米陶瓷球对铜硫矿磨矿和浮选的影响[J]. 有色金属工程, 2019, 9(1): 70−76. doi: 10.3969/j.issn.2095-1744.2019.01.012

    LIAO N N, WU C B, WU Z Q, et al. Effect of nano ceramic ball on grinding and flotation in copper sulfur ore[J]. Nonferrous Metals Engineering, 2019, 9(1): 70−76. doi: 10.3969/j.issn.2095-1744.2019.01.012

    [65]

    STALINSKII DV, AS RUDYUK, VK SOLENYI, et al. Improving the quality of steel grinding balls[J]. Steel in Translation, 2017, 47(2): 130−136. doi: 10.3103/S0967091217020115

    [66]

    郎洪明. 磨球的生产和选用现状及发展趋势[J]. 热加工工艺, 2010, 39(15): 4. doi: 10.14158/j.cnki.1001-3814.2010.15.056

    LANG H M. Development trend of manufacture and selection of milling ball[J]. Hot Working Technology, 2010, 39(15): 4. doi: 10.14158/j.cnki.1001-3814.2010.15.056

    [67]

    MI PASHECHKO, J MONTUSIEWICZ. Evaluation of the wear resistance of eutectic coatings of the Fe–Mn–C–B system alloyed by Si, Ni, and Cr using multi-criteria analysis[J]. Materials Science, 2012, 47(6): 813−821. . doi: 10.1007/s11003-012-9460-7

    [68]

    TĘCZA G, GŁOWNIA J. Resistance to abrasive wear and volume fraction of carbides in cast high-manganese austenitic steel with composite structure[J]. Archives of Foundry Engineering, 2015.

    [69]

    OLEKSANDR IVANOV, PAVLO PRYSYAZHNYUK, DMYTRO LUTSAK, et al. Improvement of abrasion resistance of production equipment wear parts by hardfacing with flux-cored wires containing boron carbide/metal powder reaction mixtures[J]. Management Systems in Production Engineering, 2020.

    [70]

    智海旭. 合金化处理对高锰钢衬板耐磨性影响的研究[D]. 南昌: 东华理工大学, 2020

    ZHI H X. Study on the effect of alloying treatment on wear resistance of high manganese steel liner[D]. Nanchang: East China University of Technology, 2020.

    [71]

    涂斌. 超高锰钢耐磨衬板的制备工艺及组织性能研究[D]. 赣州: 江西理工大学, 2017

    TU B. Study on preparation technology and microstructure properties of wear resistance lining plate of ultra-high manganese steel[D]. Ganzhou: Jiangxi University of Science and Technology, 2017.

    [72]

    张腾飞. 球磨机高锰钢衬板的成分与性能优化研究[D]. 北京: 北京交通大学, 2017

    ZHANG T F. Optimization and study on composition and performance of high manganese steel liner for ball mill[D]. Beijing: Beijing Jiaotong University, 2017.

    [73]

    GE S R, WANG Q L, WANG J L. The impact wear-resistance enhancement mechanism of medium manganese steel and its applications in mining machines[J]. Wear, 2017, 376-377: 1097−1104. doi: 10.1016/j.wear.2017.01.015

    [74]

    ZHAO J L, YAN X I, SHI W, et al. Microstructure and mechanical properties of high manganese TRIP steel[J]. Journal of Iron and Steel Research, 2012, 19(4): 57−62. doi: 10.1016/S1006-706X(12)60088-0

    [75]

    ATUL SAXENA, S. N. PRASAD, S. GOSWAMI, et al.Influence of austempering parameters on the microstructure and tensile properties of a medium carbon–manganese steel[J]. Materials Science and Engineering:a, 2006, 431(1): 53−58.

    [76]

    XU H F, ZHAO J, CAO W Q, et al. Heat treatment effects on the microstructure and mechanical properties of a medium manganese steel (0.2C–5Mn)[J]. Materials Science and Engineering:a, 2012, 532: 435−442. doi: 10.1016/j.msea.2011.11.009

    [77]

    K. D. TOZETTI, E. ALBERTIN, C. SCANDIANAbrasive size and load effects on the wear of a 19.9% chromium and 2.9% carbon cast iron[J]. Wear, 2017, 376-377: 46−53. doi: 10.1016/j.wear.2017.02.008

    [78]

    陈永泰, 邓军, 韩朝晖. W-Mn-V抗磨铸铁的合金化原理及磨球制造工艺[J]. 甘肃工业大学学报, 1998(2): 26−29.

    CHEN Y T, DENG J, HAN C H. Investigation of alloying mechanism of W-Mn-V wear resistant cast iron and manufacturing process of grinding balls[J]. Journal of Gansu University of Technology, 1998(2): 26−29.

    [79]

    李卫. 高硬度280Cr25Mo2W3耐磨铸铁合金碳化物的研究[J]. 材料热处理学报, 2008(3): 10−13. doi: 10.13289/j.issn.1009-6264.2008.03.035

    LI W. Study on carbides of high hardness wear resistant cast iron 280Cr25Mo2W3[J]. Transactions of Materials and Heat Treatment, 2008(3): 10−13. doi: 10.13289/j.issn.1009-6264.2008.03.035

    [80]

    王三军. 耐磨铸铁的研制及其耐磨性的试验研究[J]. 佳木斯大学学报(自然科学版), 2018, 36(1): 83−85.

    WANG S J. The preparation of wear resistant cast iron and its experimental study on the wear resistance[J]. Journal of Jiamusi University (Natural Science Edition), 2018, 36(1): 83−85.

    [81]

    李晓林. 渗氮工艺对耐磨铸铁组织和硬度的影响[J]. 铸造技术, 2015, 36(12): 2873−2876. doi: 10.16410/j.issn1000-8365.2015.12.018

    LI X L. Effect of nitriding process on microstructure and hardness of wear resistant cast iron[J]. Foundry Technology, 2015, 36(12): 2873−2876. doi: 10.16410/j.issn1000-8365.2015.12.018

    [82]

    柴增田, 刘春哲. 新型合金化高铬铸铁磨球的研究进展[J]. 铸造技术, 2017, 38(7): 1544−1546. doi: 10.16410/j.issn1000-8365.2017.07.004

    CHAI Z T, LIU C Z. Research progress of alloying high-chromium cast iron grinding ball[J]. Foundry Technology, 2017, 38(7): 1544−1546. doi: 10.16410/j.issn1000-8365.2017.07.004

    [83]

    康沫狂, 贾虎生, 杨延清, 等. 新型系列准贝氏体钢[J]. 金属热处理, 1995(12): 3−5,23. doi: 10.13251/j.issn.0254-6051.1995.12.001

    KANG M K, JIA H S, YANG Y Q, et al. New type meta-bainitic steel series[J]. Heat Treatment of Metals, 1995(12): 3−5,23. doi: 10.13251/j.issn.0254-6051.1995.12.001

    [84]

    杨延清, 陈彦, 康沫狂. 准贝氏体组织及新型系列准贝氏体钢[J]. 特殊钢, 1999(4): 37−39. doi: 10.3969/j.issn.1003-8620.1999.04.011

    YANG Y Q, CHEN Y, KANG M K. Microstructure of meta bainite and new meta bainitic steel series[J]. Special Steel, 1999(4): 37−39. doi: 10.3969/j.issn.1003-8620.1999.04.011

    [85]

    方鸿生, 冯春, 郑燕康, 等. 新型Mn系空冷贝氏体钢的创制与发展[J]. 热处理, 2008(3): 2−19. doi: 10.3969/j.issn.1008-1690.2008.03.001

    FANG H S, F C, ZHENG Y K, et al. Creation and development of novel mn series air cooled bainitic steels[J]. Heat Treatment, 2008(3): 2−19. doi: 10.3969/j.issn.1008-1690.2008.03.001

    [86]

    苏兴强, 周鲁生, 段其福. 金属磁性衬板应用进展[J]. 金属矿山, 2006(3): 14−17. doi: 10.3321/j.issn:1001-1250.2006.03.004

    SU X Q, ZHOU L S, DUAN Q F. Review of application technology of hanma brand metal magnetic lining[J]. Metal Mine, 2006(3): 14−17. doi: 10.3321/j.issn:1001-1250.2006.03.004

    [87]

    刘忠伟, 王勇智, 邱伟, 等. 橡胶衬板在硫化铜镍矿磨矿上的应用[J]. 吉林地质, 2009, 28(4): 130−132. doi: 10.3969/j.issn.1001-2427.2009.04.039

    LIU Z W, WANG Y Z, QIU W, et al. Application of rubber liner in grinding Cu-Ni sulfide ore[J]. Jilin Geology, 2009, 28(4): 130−132. doi: 10.3969/j.issn.1001-2427.2009.04.039

  • 加载中

(2)

计量
  • 文章访问数:  156
  • PDF下载数:  2
  • 施引文献:  0
出版历程
收稿日期:  2022-05-27
刊出日期:  2023-02-15

目录