Study on the Flotation Performance of a New Combined Collector for Lepidolite, Albite and Quartz
-
摘要:
研发新型高效锂云母浮选捕收剂对于我国锂工业的发展具有重要战略意义。以锂云母、钠长石和石英单矿物为研究对象,采用由有机胺类和多官能团羧酸类捕收剂组成的新型阴阳离子组合捕收剂SDI−101,系统考察药剂质量配比、药剂用量、矿浆pH、抑制剂用量等因素对三种单矿物浮选行为的影响,并与传统阴阳离子组合捕收剂(十二胺(DDA)+油酸钠(NaOL))进行对比。通过红外光谱检测、Zeta电位分析、接触角检测、表面张力测量、泡沫性能测试等检测分析手段系统研究了新型组合捕收剂在锂云母表面的吸附方式及作用机理。实验结果表明,在组合捕收剂SDI−101(阳离子与阴离子捕收剂质量比1∶1)用量为500 g/t时,锂云母的回收率超过90%,高于传统组合捕收剂DDA+NaOL的40%,其对锂云母的捕收性能更强,而长石回收率仅为12.5%,石英回收率低于2%,基本不浮。机理研究结果表明,与常规组合捕收剂相比,SDI−101具有良好的泡沫性能,新型组合捕收剂通过疏水缔合共吸附于锂云母表面,同时可减弱吸附时存在的静电斥力,表现出更强的协同作用,提高了捕收剂分子在锂云母表面吸附的数量及稳定性,从而增强了对锂云母的捕收性能。
Abstract:The research and development of novel high−efficiency lepidolite collector is of great strategic significance for the development of China's lithium industry. Taking single minerals (lepidolite, albite and quartz) as the research object, a novel type of anionic and cationic combined collector SDI−101 composed of organic amines and multi−functional carboxylic acid collectors was used. The effects of factors such as reagent mass ratio, dosage, pulp pH, and depressant dosage on the flotation behavior of the three single minerals were systematically investigated, and compared with traditional anionic and cationic combined collector (dodecylamine (DDA)+sodium oleate (NaOL)). The adsorption mode and mechanism of the novel combined collector on lepidolite surface were systematically studied by means of infrared spectroscopy, Zeta potential, contact angle, surface tension, foam performance test and other analysis methods. The experimental results showed that when the dosage of combined collector SDI−101 (the mass ratio of cationic collector to anionic collector 1:1) was 500 g/t, the recovery rate of lepidolite was more than 90%, which was higher than 40% of the traditional combined collector DDA+NaOL. The collection performance of lepidolite was stronger, with a feldspar recovery rate of only 12.5% and a quartz recovery rate of less than 2%, which was hardly floating. The mechanism research results showed that, compared with conventional combined collector, SDI−101 had good foam performance. The novel combined collector showed stronger synergistic effects by hydrophobic association co−adsorption on the lepidolite surface and reducing the electrostatic repulsion during adsorption, which could improve the adsorption quantity and stability of collector molecules on the lepidolite surface, and thus enhanced the collection performance of lepidolite.
-
Key words:
- lepidolite /
- combination collector /
- collecting property /
- mechanism /
- synergistic effect /
- flotation
-
-
表 1 不同捕收剂的表面参数
Table 1. Surface properties of differrent collectors
捕收剂种类 CMC/(mol·L−1) γCMC/(mN·m−1) Γmax/(mol·m−2) Amin/nm2 SDI−101 1.21×10−4 22.34 4.38×10−6 0.315 SD 8.91×10−3 29.93 0.85×10−6 1.95 SDI 4.63×10−3 34.25 0.526×10−6 3.79 表 2 捕收剂质量配比对泡沫性能的影响
Table 2. Effect of collector ratio on foam properties
捕收剂种类 阳/阴离子
捕收剂质量比泡沫层
高度/mm泡沫
半衰期/s泡沫
含水量/%捕收剂SDI−101 2∶1 39 189 54.1 捕收剂SDI−101 1∶1 33 178 49.3 捕收剂SDI−101 1∶2 29 185 52.7 捕收剂DDA+NaOL 2∶1 67 298 71.6 捕收剂DDA+NaOL 1∶1 65 276 68.9 捕收剂DDA+NaOL 1∶2 61 257 67.1 -
[1] 刘丽君, 王登红, 刘喜方, 等. 国内外锂矿主要类型、分布特点及勘查开发现状[J]. 中国地质, 2017, 44(2): 263−278.
LIU L J, WANG D H, LIU X F, et al. The main types, distribution features and present situation of exploration and development for domestic and foreign lithium mine[J]. Geology in China, 2017, 44(2): 263−278.
[2] 王核, 黄亮, 白洪阳, 等. 中国锂资源的主要类型、分布和开发利用现状: 评述和展望[J]. 大地构造与成矿学, 2022, 46(5): 848−866.
WANG H, HUANG L, BAI H Y, et al. Types, distribution, development and utilization of lithium mineral resources in China: Review and Perspective[J]. Geotectonics and Metallogeny, 2022, 46(5): 848−866.
[3] 邢凯, 朱清, 邹谢华, 等. 新能源背景下锂资源产业链发展研究[J]. 中国地质, 2023, 50(2): 395−409.
XING K, ZHU Q, ZOU X H, et al. Research on development of industry chain of lithium resources under the background of new energy[J]. Geology in China, 2023, 50(2): 395−409.
[4] 王芳. 锂矿资源研究[D]. 北京: 中国地质大学(北京), 2020.
WANG F. Research on lithium mineral resources[D]. Beijing: China University of Petroleum(Beijing), 2020.
[5] 高春亮, 余俊清, 闵秀云, 等. 全球盐湖卤水锂矿床的分布特征及其控制因素[J]. 盐湖研究, 2020, 28(4): 48−55.
GAO C L, YU J Q, MIN X Y, et al. Distribution characteristics and controlling factors of lithium brine deposits in the World[J]. Journal of Salt Lake Research, 2020, 28(4): 48−55.
[6] 茹存一. 中国锂矿资源供需形势评价[D]. 北京: 中国地质大学(北京), 2021.
RU C Y. Research on risk evaluation and situation of China's lithium resources supply[D]. Beijing: China University of Petroleum(Beijing), 2021.
[7] 李燕, 王敏, 赵有璟, 等. 盐湖卤水锂资源提取技术及开发现状[J]. 盐湖研究, 2023, 31(2): 71−80.
LI Y, WANG M, ZHAO Y, et al. Technology and development of lithium extraction from salt lake brine[J]. Journal of Salt Lake Research, 2023, 31(2): 71−80.
[8] 胡瑞忠, 温汉捷, 叶霖, 等. 付山岭. 2020. 扬子地块西南部关键金属元素成矿作用[J]. 科学通报, 65(33): 3700−3714.
Hu R Z, Wen H J, Ye L, et al. Metallogeny of critical metals in the Southwestern Yangtze Block (in Chinese)[J]. Chin Sci Bull, 2020, 65: 3700−3714.
[9] 韩佳欢, 乜贞, 方朝合, 等. 中国锂资源供需现状分析[J]. 无机盐工业, 2021, 53(12): 61−66.
HAN J H, NIE Z, FANG C H, et al. Analysis of existing circumstance of supply and demand on China's lithium resources[J]. Inorganic Chemicals Industry, 2021, 53(12): 61−66.
[10] 马哲, 李建武. 中国锂资源供应体系研究: 现状、问题与建议[J]. 中国矿业, 2018, 27(10): 1−7.
MA Z, LI J W, Analysis of China's lithium resources supply system: status, issues and suggestions[J]. China Mining Magazine, 2018, 27(10): 1−7.
[11] 雷晓力, 胡永达, 杜轶伦. 我国锂供需形势分析及对策建议[J]. 中国矿业, 2016, 25(S1): 25−26.
LEI X L, HU Y D, DU Y L. Analysis on the supply and demand trend of indium and recommended management strategies in China[J]. China Mining Magazine, 2016, 25(S1): 25−26.
[12] 程奇, 陈伟, 刘广义. 锂云母浮选捕收剂和抑制剂研究进展[J]. 矿产保护与利用, 2023, 43(2): 11−19.
CHENG Q, CHEN W, LIU G Y. Review on progress of lepidolite flotation collectors and depressants[J]. Conservation and Utilization of Mineral Resources, 2023, 43(2): 11−19.
[13] 白阳, 崔万顺, 文伟翔, 等. 阴阳离子组合捕收剂在锂云母浮选气液界面的协同作用机理[J]. 矿产保护与利用, 2023, 43(1): 44−49.
BAI Y, CUI W S, WEN W X, et al. Synergistic mechanism of mixed anionic/cationic collectors at gas−liquid interface in lepidolite flotation[J]. Conservation and Utilization of Mineral Resources, 2023, 43(1): 44−49.
[14] 陈旭东, 刘文刚, 彭祥玉, 等. 氨基三亚甲基膦酸抑制剂在菱镁矿和白云石浮选分离中的作用机理[J]. 矿产保护与利用, 2022, 42(2): 91−99.
CHEN X D, LIU W G, PENG X Y, et al. Effect and mechanism of depressant amino trimethylene phosphonic acid on flotation separation of magnesite and dolomite[J]. Conservation and Utilization of Mineral Resources, 2022, 42(2): 91−99.
[15] 高子蕙, 朱一民. 疏水碳链长度对胺类捕收剂起泡性能的影响研究[J]. 金属矿山, 2019.
GAO Z H, ZHU Y M. Effect of hydrophobic carbon chain length on properties of monoamine collector foaming abilities[J]. Metal Mine, 2019.
[16] 杨刚. 弱酸条件下含铷锂云母与长石的浮选分离研究[D]. 北京: 北京有色金属研究总院, 2020.
YANG G. Research on the Flotation of Rubidium−containing Lepidolite and Feldspar under the Condition of Weak Acid [D]. Beijing: General Rasearch Institute for Nonferrous Matals, 2020.
[17] 刘文宝, 刘文刚, 张乃旭, 等. N, N−二(3−氯−2−羟丙基)十二胺对菱镁矿浮选脱硅性能的影响[J]. 东北大学学报(自然科学版), 2018, 39(8): 1192−1195+1210.
LIU W B, LIU W G, ZHANG N X, et al. Effect of N, N−2(3−chloride, 2−hydroxypropyl) dodecylamine on flotation desilicication of magnesite ore[J]. Journal of Northeastern University( Natural Science), 2018, 39(8): 1192−1195+1210.
[18] 何建聪, 罗溪梅, 蒋旺强, 等. 十二胺与十二烷基磺酸钠组合捕收剂对赤铁矿浮选的优化及其泡沫性能调控[J]. 有色金属工程, 2023, 13(5): 75−83.
HE J C, LUO X M, JIANG W Q, et al. Optimization of mixed collector of DDA and SDS on flotation and foam during hematite flotation[J]. Nonferrous Metals Engineering, 2023, 13(5): 75−83.
-