-
摘要:
坦桑尼亚某晶质石墨矿固定碳含量为3.74%,鳞片粒径+147 µm占比97.18%。对比了高压辊磨机和球磨机两种磨矿方式下浮选粗精矿的分质产品差异,并开展了各分质产品再磨再选试验。试验结果表明,采用层压粉碎(高压辊磨机)—分质分选新工艺效果较好,粗粒低碳分质产品单独再磨避免了脉石对粗精矿中高解离度大鳞片石墨的破坏,且碳品位提升较快,其再选精矿与中粒中碳产品合并成一个产品,与细粒高碳产品分别经两段再磨再选后,精矿碳品位均大于96%,最终获得了碳品位96.24%、回收率95.30%的精矿。层压粉碎—分质分选工艺相比常规粗精矿混目再磨再选工艺减少了五次再磨六次精选,最终精矿碳品位高1.04百分点,+0.30 mm粒级精矿产率高3.25百分点。
Abstract:The fixed carbon content of a crystalline graphite ore from Tanzania is 3.74%, among of which the +147 µm size flake graphite accounts for 97.18%. In this paper, the different rough concentrates and further regrinding and reflotation tests between high pressure roller mill and ball mill were compared.The results showed that the effect of the new process of "particles bed comminution (high pressure roller mill)−grading and grading separation" was better. The regrinding of coarse−grained low−carbon products avoided the damage of gangue to large−scale graphite with high dissociation degree in coarse concentrate, and the carbon grade increased rapidly. Its recleaning concentrate and medium−grained medium−carbon were combined into one product, and fine−grained high−carbon products were regrinding and re−concentration in two stages respectively. The fixed carbon content of both concentrates were greater than 96%. Compared with the conventional process, "five times regrinding and six times flotation" were reduced. The final carbon grade of the concentrate was higher than 95% and the +0.15 mm particle size was about 65% in both processes. The +0.30 mm content in the new process was 3.37% higher.
-
-
表 1 原矿化学多元素分析结果
Table 1. Multi-elements analysis results of raw ores
/% 元素 固定C SiO2 Al2O3 Fe2O3 CaO S MgO Na2O TiO2 MnO 含量/% 3.74 69.88 8.05 4.19 3.64 1.86 1.73 1.05 0.42 0.12 表 2 原矿主要矿物组成分析结果
Table 2. Analysis results of main mineral composition of raw ores
/% 矿物 石墨 石英 斜长石 白云母 黄铁矿 透辉石 黑云母 其他 含量 3~4 55~60 15~20 3~5 3~5 1~2 1~3 <1 表 3 原矿石墨鳞片片径统计表
Table 3. Graphite flake diameter statistics of raw ores
片径/mm −0.147 −0.175+0.147 −0.287+0.175 +0.287 分布率/% 2.81 2.63 15.68 78.88 表 4 原矿石墨鳞片厚度统计表
Table 4. Graphite flake thickness statistics of raw ores
厚度/mm −0.010 −0.030+0.010 −0.050+0.030 +0.050 分布率/% 3.00 40.88 35.30 20.82 表 5 高压辊磨和球磨磨矿产品粒度组成对比
Table 5. Comparison of particle size composition of high pressure roller mill and ball mill grinding products
粒级/mm 高压辊磨机产品 球磨机产品 产率/% 碳品位/% 碳分布率/% 产率/% 碳品位/% 碳分布率/% +0.300 24.39 4.04 26.73 12.24 14.40 48.30 −0.300+0.150 35.60 5.07 48.95 39.74 2.96 32.23 −0.150+0.074 20.81 3.05 17.21 29.61 1.81 14.69 −0.074+0.045 8.71 1.89 4.47 8.04 1.18 2.60 −0.045+0.030 5.12 1.09 1.51 4.36 0.61 0.73 −0.030 5.37 0.78 1.13 6.01 0.88 1.45 原矿 100.00 3.69 100.00 100.00 3.65 100.00 表 6 浮选−分质分级试验结果
Table 6. Flotation classification grading test results
产品名称 粒级 高压辊磨机 球磨机 产率/% 碳品位/% 产率/% 碳品位/% 粗粒低碳 +0.15 mm 77.14 19.60 19.35 62.59 18.60 15.69 −0.15 mm 22.86 18.50 37.41 10.82 中粒中碳 +0.15 mm 54.19 74.50 75.92 53.52 67.76 66.20 −0.15 mm 45.81 77.61 46.48 64.40 细粒高碳 +0.15 mm 42.07 84.40 82.14 45.76 82.02 76.93 −0.15 mm 57.93 80.49 54.24 72.63 表 7 分质产品二段再磨再选精矿产品结果
Table 7. Concentrate product results of two-stage regrinding and reconcentration of quality products
/% 产品名称 给矿固定碳含量 精矿固定碳含量 精矿回收率 粗粒低碳再选精矿和中粒中碳产品 70.18 98.11 88.31 细粒高碳产品 82.14 97.70 85.72 表 8 闭路试验结果
Table 8. Results of closed-circuit test
产品名称 常规粗精矿混目再磨再选工艺 层压粉碎—分质分选新工艺 产率/% 固定碳含量/% 回收率/% 产率/% 固定碳含量/% 回收率/% +0.3 mm精矿 0.96 95.82 24.48 1.09 97.43 27.26 −0.30+0.15 mm精矿 1.52 95.50 38.62 1.38 96.44 34.17 −0.15 mm精矿 1.35 94.41 33.91 1.38 95.09 33.87 精矿合计 3.83 95.20 97.01 3.85 96.24 95.30 总尾矿 96.17 0.12 2.99 96.15 0.19 4.70 原矿 100.00 3.76 100.00 100.00 3.76 100.00 -
[1] D. JARA A, BETEMARIAM A, WOLDETINSAE G, et al. Purification, application and current market trend of natural graphite: a review[J]. International Journal of Mining Science and Technology, 2019, 29(5): 671−689. doi: 10.1016/j.ijmst.2019.04.003
[2] 牛敏, 刘磊, 陈龙, 等. 层压粉碎—分质分选技术用于保护大鳞片石墨的研究[J]. 矿产保护与利用, 2018(4): 83−88.
NIU M, LIU L, CHEN L, et al. Study on the protection of large scale graphite by particle bed breakage - grading separation technology[J]. Conservation and Utilization of Mineral Resource, 2018(4): 83−88.
[3] 刘磊, 牛敏, 郭珍旭, 等. 黑龙江某鳞片石墨层压粉碎-分质分选技术研究[J]. 非金属矿, 2019, 42(6): 57−61.
LIU L, NIU M, GUO Z X, et al. Study on particle bed breakage-grading separation technology of flake graphite from heilongjiang[J]. Non-Metallic mines, 2019, 42(6): 57−61.
[4] 刘磊, 郭理想, 孙华星, 等. 甘肃阿克塞晶质石墨浮选工艺对比研究[J]. 非金属矿, 2020, 43(6): 56−59+63.
LIU L, GUO L X, SUN H X, et al. Comparative study on flotation technology of crystalline graphite from Akesai in Gansu province[J]. Non-Metallic mines, 2020, 43(6): 56−59+63.
[5] TONG Z, LIU L, YUAN Z, et al. The effect of comminution on surface roughness and wettability of graphite particles and their relation with flotation[J]. Minerals Engineering, 2021, 169: 106959. doi: 10.1016/j.mineng.2021.106959
[6] MA F, TAO D, TAO Y, et al. An innovative flake graphite upgrading process based on HPGR, stirred grinding mill, and nanobubble column flotation[J]. International Journal of Mining Science and Technology, 2021, 31(6): 1063−1074. doi: 10.1016/j.ijmst.2021.06.005
[7] ZHANG H, LI H, FENG A, et al. Application of stirred mill to upgrading of graphite concentrate by flotation[J]. Canadian Metallurgical Quarterly, 2018, 57(2): 245−251. doi: 10.1080/00084433.2017.1409934
[8] 邱杨率, 余永富, 管俊芳, 等. 非洲三个地区石墨矿矿石特征及可选性研究[J]. 矿产保护与利用, 2018(5): 45−50.
QIU Y S,YU Y F,GUAN J F, et al. Study on ore characteristics and beneficiability of three flaky graphite mines in Africa[J]. Conservation and Utilization of Mineral Resource, 2018(5): 45−50.
-