无机/有机助磨剂对石英磨矿动力学模型参数的影响研究

田鹏程, 王泽红, 毛勇. 无机/有机助磨剂对石英磨矿动力学模型参数的影响研究[J]. 矿产保护与利用, 2023, 43(3): 112-119. doi: 10.13779/j.cnki.issn1001-0076.2023.03.013
引用本文: 田鹏程, 王泽红, 毛勇. 无机/有机助磨剂对石英磨矿动力学模型参数的影响研究[J]. 矿产保护与利用, 2023, 43(3): 112-119. doi: 10.13779/j.cnki.issn1001-0076.2023.03.013
TIAN Pengcheng, WANG Zehong, MAO Yong. Study on the Effect of Inorganic/organic Grinding Aids on the Kinetic Model Parameters of Quartz Grinding[J]. Conservation and Utilization of Mineral Resources, 2023, 43(3): 112-119. doi: 10.13779/j.cnki.issn1001-0076.2023.03.013
Citation: TIAN Pengcheng, WANG Zehong, MAO Yong. Study on the Effect of Inorganic/organic Grinding Aids on the Kinetic Model Parameters of Quartz Grinding[J]. Conservation and Utilization of Mineral Resources, 2023, 43(3): 112-119. doi: 10.13779/j.cnki.issn1001-0076.2023.03.013

无机/有机助磨剂对石英磨矿动力学模型参数的影响研究

  • 基金项目: 国家自然科学基金面上项目(51874073)
详细信息
    作者简介: 田鹏程(1997—),男,山西朔州人,硕士研究生,主要从事矿物加工工程领域的研究,E-mail:842538326@qq.com; 王泽红,矿物加工工程博士,东北大学资源与土木工程学院矿物工程系副教授,博士生导师;辽宁省第五批“百千万人才工程”千人层次人选,沈阳市拔尖人才;曾赴澳大利亚南澳大学Ian Wark 研究所从事博士后研究工作。主要研究方向:矿物加工理论与工艺、粉体工程与矿物材料、选矿过程数学模型与模拟。承担国家“863”计划、国家自然科学基金、省科技攻关及基金课题以及横向课题数十项。曾获辽宁省科技进步二等奖、中国有色金属建设协会优秀工程咨询成果二等奖等;发表学术论文近百篇,主编出版《选矿数学模型》《选矿厂设计》《矿物材料》等专著,参编《选矿工程师手册(第一分册)》、《矿产资源高效加工与综合利用》(下册)以及《现代选矿技术手册》(第1册:破碎筛分与磨矿分级)等专著
    通讯作者: 王泽红(1969—),男,山西永济人,副教授,博士,主要从事矿物加工工程领域的教学和科研工作,E-mail:wangzehong@mail.neu.edu.cn
  • 中图分类号: TD921+.4

Study on the Effect of Inorganic/organic Grinding Aids on the Kinetic Model Parameters of Quartz Grinding

More Information
  • 以石英为磨机给料,通过添加6种助磨剂(无机类助磨剂焦磷酸钠、硫酸铝以及三聚磷酸钠;有机类助磨剂丙三醇、柠檬酸以及乙基黄原酸钾)进行湿式磨矿试验,建立了助磨剂添加前后石英粉磨的m阶磨矿动力学模型,系统分析了助磨剂对模型参数和磨矿速率的影响。研究表明经过磨矿时间10 min后,用量0.5%三聚磷酸钠使得磨矿产品中−0.074 mm含量增加7.44百分点,用量0.5%柠檬酸使得磨矿产品中−0.074 mm含量增加7.00百分点;助磨剂改变了模型参数km的值,整体磨矿效果取决于km的综合效应;三聚磷酸钠作用下,−1+0.45 mm粒级石英磨矿速率的增量最大,柠檬酸作用下,−0.45+0.18 mm粒级石英磨矿速率的增量最大。

  • 加载中
  • 图 1  石英X射线衍射图谱

    Figure 1. 

    图 2  原料的粒度特性曲线

    Figure 2. 

    图 3  不同粒级的ln[ln(R0/Rt)]与lnt的关系曲线

    Figure 3. 

    图 4  各粒级物料磨矿速率与时间关系曲线

    Figure 4. 

    图 5  助磨剂用量对磨矿产品中−0.074 mm含量的影响

    Figure 5. 

    图 6  助磨剂对石英粉磨m阶磨矿动力学模型参数km的影响

    Figure 6. 

    图 7  +0.074 mm粒级的产率与磨矿时间的关系

    Figure 7. 

    图 8  助磨剂对−1+0.45 mm和−0.45+0.18 mm粒级磨矿速率的影响

    Figure 8. 

    表 1  磨矿条件参数

    Table 1.  Parameters of grinding condition

    湿式磨矿参数参数取值
    转速率/%80
    介质充填率/%45
    料球比0.75
    磨矿浓度(质量百分比)/ %70
    下载: 导出CSV

    表 2  不同磨矿时间下磨矿产品的粒度分布

    Table 2.  Particle size distribution of grinding products in different time

    粒级/mm不同磨矿时间下磨矿产品的各粒级含量/%
    0 min1 min3 min5 min7 min10 min
    −2+116.1511.709.326.254.224.02
    −1+0.4557.6448.8941.8231.6624.8923.28
    −0.45+0.1885.0479.0872.7663.9556.9052.54
    −0.18+0.194.6591.2787.3781.7276.1973.31
    −0.1+0.074100.0096.6094.6589.5586.4183.74
    下载: 导出CSV

    表 3  各粒级的m阶磨矿动力学方程式参数km

    Table 3.  Parameters k and m of m-order grinding kinetic equation for each grain size

    粒级/mmkmR2
    −2+10.30780.65090.9670
    −1+0.450.15860.76150.9734
    −0.45+0.180.07040.83030.9852
    −0.18+0.10.03490.85870.9874
    −0.1+0.0740.03140.72990.9536
    下载: 导出CSV

    表 4  助磨剂作用后磨矿产品粒度组成

    Table 4.  Particle size distribution of grinding products with grinding aids in different time

    粒级/mm用量0.7%焦磷酸钠作用后不同磨碎时间的
    磨矿产品各粒级累计含量/%
    用量0.5%硫酸铝作用后不同磨碎时间的
    磨矿产品各粒级累计含量/%
    1 min3 min5 min7 min10 min1 min3 min5 min7 min10 min
    −2+114.178.945.824.532.1212.208.465.553.471.59
    −1+0.4550.9138.1028.9022.8012.6351.7541.6930.5419.729.49
    −0.45+0.1880.4770.6061.0854.7241.5181.1971.2463.9552.6038.28
    −0.18+0.191.5286.0279.7774.9564.5793.4987.3482.5774.8063.79
    −0.1+0.07497.5294.0188.6385.5578.9498.9594.7091.0785.7578.10
    −0.074100.00100.00100.00100.00100.00100.00100.00100.00100.00100.00
    粒级/mm用量0.5%三聚磷酸钠作用后不同磨碎时间的
    磨矿产品各粒级累计含量/%
    用量0.5%柠檬酸作用后不同磨碎时间的
    磨矿产品各粒级累计含量/%
    1 min3 min5 min7 min10 min1 min3 min5 min7 min10 min
    −2+112.367.765.573.321.5312.979.214.943.671.63
    −1+0.4551.4337.3527.3119.038.3349.8039.1622.8218.919.10
    −0.45+0.1878.6669.4760.5551.5036.0879.4870.1156.2850.3135.97
    −0.18+0.190.7185.4979.5173.4762.2791.1785.0376.9471.8161.56
    −0.1+0.07496.4193.8389.3785.0077.7497.5293.5488.2484.3376.30
    −0.074100.00100.00100.00100.00100.00100.00100.00100.00100.00100.00
    粒级/mm用量0.7%丙三醇作用后不同磨碎时间的
    磨矿产品各粒级累计含量/%
    用量0.5%乙基黄原酸钾作用后不同磨碎时间的
    磨矿产品各粒级累计含量/%
    1 min3 min5 min7 min10 min1 min3 min5 min7 min10 min
    −2+112.598.935.543.592.26 13.809.394.834.201.49
    −1+0.4551.0038.0430.9022.7314.6252.4842.3530.1124.607.68
    −0.45+0.1880.1471.0663.7655.1544.4980.2372.5163.8557.1136.66
    −0.18+0.191.2286.9681.7976.0567.4391.5187.9880.9177.3362.46
    −0.1+0.07497.3594.5390.8088.9678.2697.2795.2389.8687.7577.37
    −0.074100.00100.00100.00100.00100.00100.00100.00100.00100.00100.00
    下载: 导出CSV

    表 5  助磨剂作用下的m阶磨矿动力学模型

    Table 5.  M-order grinding kinetic models with grinding aids

    助磨剂及用量m阶磨矿动力学模型
    焦磷酸钠(0.7%)
    硫酸铝(0.5%)
    三聚磷酸钠(0.5%)
    柠檬酸(0.5%)
    丙三醇(0.7%)
    乙基黄原酸钾(0.5%)
    下载: 导出CSV
  • [1]

    韩跃新. 磨矿原理[M]. 北京: 冶金工业出版社, 2022: 120−131.

    HAN Y X. The principle of grinding[M]. Beijing: Metallurgical Industey Press, 2022: 120−131.

    [2]

    NOMURA S. Analysis of the ball mill grindability to improve the simplified grinding model[J]. Powder Technology, 2022, 405: 117551. doi: 10.1016/j.powtec.2022.117551

    [3]

    田鹏程, 王泽红, 毛勇. 磨矿动力学研究现状及应用[J]. 中国矿业, 2022, 31(7): 112−121.

    TIAN P C, WANG Z H, M Y. Research status and application of grinding kinetics[J]. China Mining Magazine, 2022, 31(7): 112−121.

    [4]

    NICOLETTA A M, ANGELA B, MARCELLO F, et al. Modeling grinding kinetics of fat based anhydrous pastes[J]. Journal of Food Engineering, 2020, 268(C).

    [5]

    LEE H, KIM K, LEE H. Analysis of grinding kinetics in a laboratory ball mill using population-balance-model and discrete-element-method[J]. Advanced Powder Technology, 2019, 30(11): 2517−2526. doi: 10.1016/j.apt.2019.07.030

    [6]

    AUSTIN L G, LUCKIE P T. Methods for determination of breakage distribution parameters[J]. Powder Technology, 1972, 5(4): 215−222. doi: 10.1016/0032-5910(72)80022-6

    [7]

    CAYIRLI S. Analysis of grinding aid performance effects on dry fine milling of calcite[J]. Advanced Powder Technology, 2022, 33(3): 103446. doi: 10.1016/j.apt.2022.103446

    [8]

    BOZKURT V, OZGUR I. Dry grinding kinetics of colemanite[J]. Powder Technology, 2007, 176(2/3): 88−92.

    [9]

    NURETTIN A T, OKAY A, AHMET H B. The effects of grinding aids on modelling of air classification of cement[J]. Construction and Building Materials, 2018, 160.

    [10]

    侯英, 印万忠, 朱巨建, 等. 不同碎磨方式下紫金山金铜矿石的磨矿动力学行为[J]. 中南大学学报(自然科学版), 2017, 48(5): 1127−1133.

    HOU Y, YIN W Z, ZHU J J, et al. Grinding kinetic behaviors of Au-Cu ore from Zijinshan by different comminuting processes[J]. Journal of Central South University (Science and Technology), 2017, 48(5): 1127−1133.

    [11]

    周意超, 赵汝全, 吴彩斌, 等. 磨矿浓度对磨矿产品粒度组成特性的影响[J]. 有色金属科学与工程, 2016, 7(5): 93−97.

    ZHOU Y C, ZHAO R Q, WU C B, et al. Effect of grinding concentration on product size distribution characteristics[J]. Nonferrous Metals Science and Engineering, 2016, 7(5): 93−97.

    [12]

    HASEGAWA M, KIMATA M, SHIMANE M, et al. The effect of liquid additives on dry ultrafine grinding of quartz[J]. Powder Technology, 2001, 114(1): 145−151.

    [13]

    王力, 张常法, 张军, 等. 助磨剂对煤沥青磨矿动力学的影响[J]. 山东科技大学学报(自然科学版), 2008(5): 23−26.

    WANG L, ZHANG C F, ZHANG J, et al. The effects of grinding agents on the grinding kinetics of coal tar pitch[J]. Journal of Shandong University of Science and Technology(Natural Science), 2008(5): 23−26.

    [14]

    黄勇, 史才军, 王小刚, 等. TEA和TIPA对水泥粉磨动力学的影响[J]. 硅酸盐通报, 2013, 32(10): 2114−2120.

    HUANG Y, SHI C J, WANG X G, et al. Effect of TEA and TIPA on the grinding kinetics of cement[J]. Bulletin of the Chinese Ceramic Society, 2013, 32(10): 2114−2120.

    [15]

    CHOI H, LEE W, KIM S. Effect of grinding aids on the kinetics of fine grinding energy consumed of calcite powders by a stirred ball mill[J]. Advanced Powder Technology, 2009, 20(4): 350−354. doi: 10.1016/j.apt.2009.01.002

    [16]

    谢冬冬, 侯英, 盖壮, 等. 助磨剂对氧化铁矿石磨矿动力学行为的影响[J]. 中南大学学报(自然科学版), 2020, 51(2): 279−286.

    XIE D D, HOU Y, GAI Z, et al. Influence of grinding aids on grinding kinetics of oxidized iron ore[J]. Journal of Central South University(Science and Technology), 2020, 51(2): 279−286.

    [17]

    L. G A. A discussion of equations for the analysis of batch grinding data[J]. Powder Technology, 1999, 106(1): 71−77.

    [18]

    段希祥. 碎矿与磨矿[M]. 北京: 冶金工业出版社, 2012: 197−199.

    DUAN X X. Crushing and grinding[M]. Beijing: Metallurgical Industry Press, 2012: 197−199.

    [19]

    侯英, 丁亚卓, 印万忠, 等. 磨矿动力学参数对磨矿速度的影响[J]. 东北大学学报(自然科学版), 2013, 34(5): 708−711. doi: 10.12068/j.issn.1005-3026.2013.05.023

    HOU Y, DING Y Z, YIN W Z, et al. Influence of grinding kinetics parameters on grinding speed[J]. Journal of Northeastern University(Natural Science), 2013, 34(5): 708−711. doi: 10.12068/j.issn.1005-3026.2013.05.023

    [20]

    张志鹏, 周强, 肖庆飞, 等. 基于磨矿动力学某铜矿磨矿介质配比优化试验研究[J]. 矿产保护与利用, 2023, 43(1): 66−72. doi: 10.13779/j.cnki.issn1001-0076.2022.01.042

    ZHANG Z P, ZHOU Q, XIAO Q F, et al. Experimental study on optimization of grinding medium ratio of some copper mine based on grinding kinetics[J]. Conservation and Utilization of Mineral Resources, 2023, 43(1): 66−72. doi: 10.13779/j.cnki.issn1001-0076.2022.01.042

    [21]

    GUPTA V K. Effect of particulate environment on the grinding kinetics of mixtures of minerals in ball mills[J]. Powder Technology, 2020, 375: 549−558. doi: 10.1016/j.powtec.2020.07.072

  • 加载中

(8)

(5)

计量
  • 文章访问数:  362
  • PDF下载数:  80
  • 施引文献:  0
出版历程
收稿日期:  2023-06-02
刊出日期:  2023-06-15

目录