Study on the Effect of Inorganic/organic Grinding Aids on the Kinetic Model Parameters of Quartz Grinding
-
摘要:
以石英为磨机给料,通过添加6种助磨剂(无机类助磨剂焦磷酸钠、硫酸铝以及三聚磷酸钠;有机类助磨剂丙三醇、柠檬酸以及乙基黄原酸钾)进行湿式磨矿试验,建立了助磨剂添加前后石英粉磨的m阶磨矿动力学模型,系统分析了助磨剂对模型参数和磨矿速率的影响。研究表明经过磨矿时间10 min后,用量0.5%三聚磷酸钠使得磨矿产品中−0.074 mm含量增加7.44百分点,用量0.5%柠檬酸使得磨矿产品中−0.074 mm含量增加7.00百分点;助磨剂改变了模型参数k和m的值,整体磨矿效果取决于k和m的综合效应;三聚磷酸钠作用下,−1+0.45 mm粒级石英磨矿速率的增量最大,柠檬酸作用下,−0.45+0.18 mm粒级石英磨矿速率的增量最大。
Abstract:Quartz was used as the feed material of the mill, and six grinding aids (inorganic grinding aids: sodium pyrophosphate, aluminum sulfate, and sodium tripolyphosphate; organic grinding aids: glycerol, citric acid, and potassium ethylxanthate) were added to conduct a wet grinding test. The m-order grinding kinetic model of quartz grinding before and after the addition of grinding aids was established, and the effects of grinding aids on the model parameters and grinding rate were systematically analyzed. It was shown that after 10 min grinding, the amount of 0.5% sodium tripolyphosphate increased the −0.074 mm content of the grinding products by 7.44 percentage points and the amount of 0.5% citric acid increased the −0.074 mm content of the grinding products by 7.00 percentage points. The grinding aids changed the values of model parameters k and m. The overall grinding effect depended on the combined effect of k and m. The increment of −1+0.45 mm quartz with sodium tripolyphosphate grinding rate is the largest, and the increment of −0.45+0.18 mm with citric acid grinding rate is the largest.
-
Key words:
- quartz /
- grinding aids /
- grinding kinetics /
- grinding efficiency
-
-
表 1 磨矿条件参数
Table 1. Parameters of grinding condition
湿式磨矿参数 参数取值 转速率/% 80 介质充填率/% 45 料球比 0.75 磨矿浓度(质量百分比)/ % 70 表 2 不同磨矿时间下磨矿产品的粒度分布
Table 2. Particle size distribution of grinding products in different time
粒级/mm 不同磨矿时间下磨矿产品的各粒级含量/% 0 min 1 min 3 min 5 min 7 min 10 min −2+1 16.15 11.70 9.32 6.25 4.22 4.02 −1+0.45 57.64 48.89 41.82 31.66 24.89 23.28 −0.45+0.18 85.04 79.08 72.76 63.95 56.90 52.54 −0.18+0.1 94.65 91.27 87.37 81.72 76.19 73.31 −0.1+0.074 100.00 96.60 94.65 89.55 86.41 83.74 表 3 各粒级的m阶磨矿动力学方程式参数k和m
Table 3. Parameters k and m of m-order grinding kinetic equation for each grain size
粒级/mm k m R2 −2+1 0.3078 0.6509 0.9670 −1+0.45 0.1586 0.7615 0.9734 −0.45+0.18 0.0704 0.8303 0.9852 −0.18+0.1 0.0349 0.8587 0.9874 −0.1+0.074 0.0314 0.7299 0.9536 表 4 助磨剂作用后磨矿产品粒度组成
Table 4. Particle size distribution of grinding products with grinding aids in different time
粒级/mm 用量0.7%焦磷酸钠作用后不同磨碎时间的
磨矿产品各粒级累计含量/%用量0.5%硫酸铝作用后不同磨碎时间的
磨矿产品各粒级累计含量/%1 min 3 min 5 min 7 min 10 min 1 min 3 min 5 min 7 min 10 min −2+1 14.17 8.94 5.82 4.53 2.12 12.20 8.46 5.55 3.47 1.59 −1+0.45 50.91 38.10 28.90 22.80 12.63 51.75 41.69 30.54 19.72 9.49 −0.45+0.18 80.47 70.60 61.08 54.72 41.51 81.19 71.24 63.95 52.60 38.28 −0.18+0.1 91.52 86.02 79.77 74.95 64.57 93.49 87.34 82.57 74.80 63.79 −0.1+0.074 97.52 94.01 88.63 85.55 78.94 98.95 94.70 91.07 85.75 78.10 −0.074 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 粒级/mm 用量0.5%三聚磷酸钠作用后不同磨碎时间的
磨矿产品各粒级累计含量/%用量0.5%柠檬酸作用后不同磨碎时间的
磨矿产品各粒级累计含量/%1 min 3 min 5 min 7 min 10 min 1 min 3 min 5 min 7 min 10 min −2+1 12.36 7.76 5.57 3.32 1.53 12.97 9.21 4.94 3.67 1.63 −1+0.45 51.43 37.35 27.31 19.03 8.33 49.80 39.16 22.82 18.91 9.10 −0.45+0.18 78.66 69.47 60.55 51.50 36.08 79.48 70.11 56.28 50.31 35.97 −0.18+0.1 90.71 85.49 79.51 73.47 62.27 91.17 85.03 76.94 71.81 61.56 −0.1+0.074 96.41 93.83 89.37 85.00 77.74 97.52 93.54 88.24 84.33 76.30 −0.074 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 粒级/mm 用量0.7%丙三醇作用后不同磨碎时间的
磨矿产品各粒级累计含量/%用量0.5%乙基黄原酸钾作用后不同磨碎时间的
磨矿产品各粒级累计含量/%1 min 3 min 5 min 7 min 10 min 1 min 3 min 5 min 7 min 10 min −2+1 12.59 8.93 5.54 3.59 2.26 13.80 9.39 4.83 4.20 1.49 −1+0.45 51.00 38.04 30.90 22.73 14.62 52.48 42.35 30.11 24.60 7.68 −0.45+0.18 80.14 71.06 63.76 55.15 44.49 80.23 72.51 63.85 57.11 36.66 −0.18+0.1 91.22 86.96 81.79 76.05 67.43 91.51 87.98 80.91 77.33 62.46 −0.1+0.074 97.35 94.53 90.80 88.96 78.26 97.27 95.23 89.86 87.75 77.37 −0.074 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 表 5 助磨剂作用下的m阶磨矿动力学模型
Table 5. M-order grinding kinetic models with grinding aids
助磨剂及用量 m阶磨矿动力学模型 焦磷酸钠(0.7%) 硫酸铝(0.5%) 三聚磷酸钠(0.5%) 柠檬酸(0.5%) 丙三醇(0.7%) 乙基黄原酸钾(0.5%) -
[1] 韩跃新. 磨矿原理[M]. 北京: 冶金工业出版社, 2022: 120−131.
HAN Y X. The principle of grinding[M]. Beijing: Metallurgical Industey Press, 2022: 120−131.
[2] NOMURA S. Analysis of the ball mill grindability to improve the simplified grinding model[J]. Powder Technology, 2022, 405: 117551. doi: 10.1016/j.powtec.2022.117551
[3] 田鹏程, 王泽红, 毛勇. 磨矿动力学研究现状及应用[J]. 中国矿业, 2022, 31(7): 112−121.
TIAN P C, WANG Z H, M Y. Research status and application of grinding kinetics[J]. China Mining Magazine, 2022, 31(7): 112−121.
[4] NICOLETTA A M, ANGELA B, MARCELLO F, et al. Modeling grinding kinetics of fat based anhydrous pastes[J]. Journal of Food Engineering, 2020, 268(C).
[5] LEE H, KIM K, LEE H. Analysis of grinding kinetics in a laboratory ball mill using population-balance-model and discrete-element-method[J]. Advanced Powder Technology, 2019, 30(11): 2517−2526. doi: 10.1016/j.apt.2019.07.030
[6] AUSTIN L G, LUCKIE P T. Methods for determination of breakage distribution parameters[J]. Powder Technology, 1972, 5(4): 215−222. doi: 10.1016/0032-5910(72)80022-6
[7] CAYIRLI S. Analysis of grinding aid performance effects on dry fine milling of calcite[J]. Advanced Powder Technology, 2022, 33(3): 103446. doi: 10.1016/j.apt.2022.103446
[8] BOZKURT V, OZGUR I. Dry grinding kinetics of colemanite[J]. Powder Technology, 2007, 176(2/3): 88−92.
[9] NURETTIN A T, OKAY A, AHMET H B. The effects of grinding aids on modelling of air classification of cement[J]. Construction and Building Materials, 2018, 160.
[10] 侯英, 印万忠, 朱巨建, 等. 不同碎磨方式下紫金山金铜矿石的磨矿动力学行为[J]. 中南大学学报(自然科学版), 2017, 48(5): 1127−1133.
HOU Y, YIN W Z, ZHU J J, et al. Grinding kinetic behaviors of Au-Cu ore from Zijinshan by different comminuting processes[J]. Journal of Central South University (Science and Technology), 2017, 48(5): 1127−1133.
[11] 周意超, 赵汝全, 吴彩斌, 等. 磨矿浓度对磨矿产品粒度组成特性的影响[J]. 有色金属科学与工程, 2016, 7(5): 93−97.
ZHOU Y C, ZHAO R Q, WU C B, et al. Effect of grinding concentration on product size distribution characteristics[J]. Nonferrous Metals Science and Engineering, 2016, 7(5): 93−97.
[12] HASEGAWA M, KIMATA M, SHIMANE M, et al. The effect of liquid additives on dry ultrafine grinding of quartz[J]. Powder Technology, 2001, 114(1): 145−151.
[13] 王力, 张常法, 张军, 等. 助磨剂对煤沥青磨矿动力学的影响[J]. 山东科技大学学报(自然科学版), 2008(5): 23−26.
WANG L, ZHANG C F, ZHANG J, et al. The effects of grinding agents on the grinding kinetics of coal tar pitch[J]. Journal of Shandong University of Science and Technology(Natural Science), 2008(5): 23−26.
[14] 黄勇, 史才军, 王小刚, 等. TEA和TIPA对水泥粉磨动力学的影响[J]. 硅酸盐通报, 2013, 32(10): 2114−2120.
HUANG Y, SHI C J, WANG X G, et al. Effect of TEA and TIPA on the grinding kinetics of cement[J]. Bulletin of the Chinese Ceramic Society, 2013, 32(10): 2114−2120.
[15] CHOI H, LEE W, KIM S. Effect of grinding aids on the kinetics of fine grinding energy consumed of calcite powders by a stirred ball mill[J]. Advanced Powder Technology, 2009, 20(4): 350−354. doi: 10.1016/j.apt.2009.01.002
[16] 谢冬冬, 侯英, 盖壮, 等. 助磨剂对氧化铁矿石磨矿动力学行为的影响[J]. 中南大学学报(自然科学版), 2020, 51(2): 279−286.
XIE D D, HOU Y, GAI Z, et al. Influence of grinding aids on grinding kinetics of oxidized iron ore[J]. Journal of Central South University(Science and Technology), 2020, 51(2): 279−286.
[17] L. G A. A discussion of equations for the analysis of batch grinding data[J]. Powder Technology, 1999, 106(1): 71−77.
[18] 段希祥. 碎矿与磨矿[M]. 北京: 冶金工业出版社, 2012: 197−199.
DUAN X X. Crushing and grinding[M]. Beijing: Metallurgical Industry Press, 2012: 197−199.
[19] 侯英, 丁亚卓, 印万忠, 等. 磨矿动力学参数对磨矿速度的影响[J]. 东北大学学报(自然科学版), 2013, 34(5): 708−711. doi: 10.12068/j.issn.1005-3026.2013.05.023
HOU Y, DING Y Z, YIN W Z, et al. Influence of grinding kinetics parameters on grinding speed[J]. Journal of Northeastern University(Natural Science), 2013, 34(5): 708−711. doi: 10.12068/j.issn.1005-3026.2013.05.023
[20] 张志鹏, 周强, 肖庆飞, 等. 基于磨矿动力学某铜矿磨矿介质配比优化试验研究[J]. 矿产保护与利用, 2023, 43(1): 66−72. doi: 10.13779/j.cnki.issn1001-0076.2022.01.042
ZHANG Z P, ZHOU Q, XIAO Q F, et al. Experimental study on optimization of grinding medium ratio of some copper mine based on grinding kinetics[J]. Conservation and Utilization of Mineral Resources, 2023, 43(1): 66−72. doi: 10.13779/j.cnki.issn1001-0076.2022.01.042
[21] GUPTA V K. Effect of particulate environment on the grinding kinetics of mixtures of minerals in ball mills[J]. Powder Technology, 2020, 375: 549−558. doi: 10.1016/j.powtec.2020.07.072
-