Selective Inhibition Behavior and Mechanism of Al−starch Complex on Ultrafine Calcite in Scheelite Flotation
-
摘要:
微细粒方解石与白钨矿嵌布连生紧密,其体积小、质量轻、比表面积大,难以高效抑制,严重影响钨浮选指标的提升。通过合成反应、团簇模型计算及红外光谱分析,研究了铝离子与淀粉的作用产物;通过单矿物及实际矿石浮选实验,与苛化淀粉对比,揭示了Al−淀粉的选择性抑制效果;通过Zeta电位、X射线光电子能谱,剖析了Al-淀粉对微细粒方解石的选择性抑制机理。结果表明,Al3+最容易与淀粉反式分子支链O6和邻近O1原子反应,生成键长最短的O1—Al—O6结构。苛化淀粉对白钨矿和方解石均产生抑制作用,而Al−淀粉只对微细粒方解石的浮选产生抑制效果,将钨精矿WO3品位由苛化淀粉的31.44%提升至40.51%,从而实现白钨矿与方解石的浮选分离。苛化淀粉通过羟基作用于白钨矿和方解石的表面,使两矿物的表面电位产生负偏移,影响两矿物表面的Ca、O特征原子。Al−淀粉通过金属基团,选择性地与方解石表面阴离子O位点发生化学吸附而不会与白钨矿表面发生作用,从而改变细方解石的表面电荷及特征原子,产生抑制作用。
Abstract:Ultrafine calcite was closely associated with scheelite, and its small volume, light weight, and large specific surface area resulted in difficulty inhibiting, which seriously affected the improvement of tungsten flotation index. In this study, the molecular structure of Al−starch was studied by synthesis reaction, cluster model calculation, and infrared spectrum analysis. The selective inhibition effect of Al−starch was revealed by flotation experiments of single mineral and actual ore, which was also compared with the effect of caustic starch. The selective inhibition effect of Al−starch was revealed by flotation experiments of single mineral and actual ore. The selective inhibition mechanism of Al−starch on fine calcite was analyzed by Zeta potential and X−ray photoelectron spectroscopy. The results confirmed that Al3+ was most easily chelated with the O6 and O1 of the starch molecule of trans structure to form O1—Al—O6 structure with the shortest bond length. Caustic starch could inhibit both scheelite and calcite, while Al−starch could only inhibit the flotation of ultrafine calcite, and increased the grade of WO3 in tungsten concentrate from 31.44% to 40.51% and realized the flotation separation of scheelite from calcite. The caustic starch made the surface potential of scheelite and calcite shift negatively through hydroxy, and also affected the surface characteristic atoms of Ca and O. Al−starch was selectively chemisorbed on the O site of the anionic group on the surface of calcite through metal group but did not affect the surface of scheelite, which changed the surface charge and characteristic atoms of ultrafine calcite and inhibit its flotation.
-
Key words:
- Al-starch /
- flotation /
- ultrafine calcite /
- scheelite /
- inhibition mechanism
-
-
表 1 主要矿物组成及含量分析结果
Table 1. Analysis results of mian mineral composition and content
矿物 含量/% 矿物 含量/% 白钨矿 0.23 石英 9.83 黑钨矿 0.10 石榴石 28.44 锡石 0.13 长石 11.45 绿泥石 1.46 云母 7.50 萤石 17.33 其他 8.05 黄铁矿 1.76 — — 方解石 13.72 合计 100.00 表 2 实验所用药剂
Table 2. Reagents used in experiments
药剂名称 主要成分 等级 生产厂家 氢氧化钠(粒状) NaOH 分析纯 天津恒兴化学试剂制造有限公司 苯甲羟肟酸 C7H7NO2 分析纯 上海梯希爱化成工业发展有限公司 硝酸铅 Pb(NO3)2 分析纯 西陇化工股份有限公司 硫酸铝 Al2(SO4)3 分析纯 国药集团化学试剂有限公司 可溶性淀粉 (C6H10O5)n 分析纯 国药集团化学试剂有限公司 松油醇 C10H18O 分析纯 上海麦克林生化科技有限公司 BHA C7H7NO2 工业级 广州明特化工制药厂 硝酸铅 Pb(NO3)2 工业级 株洲选矿药剂厂 硫酸铝 Al2(SO4)3 工业级 长沙化工一厂 水玻璃 Na2O·mSiO2 工业级 长沙化工一厂 表 3 闭路实验结果
Table 3. Result of closed−circuit experiment
实验变量 产品 产率/% WO3品位/% WO3回收率/% 不加抑制剂 钨精矿 0.60 31.44 64.81 钨尾矿 99.40 0.10 35.19 合计 100.00 0.29 100.00 加入20 g/t Al−淀粉 钨精矿 0.44 40.1 61.52 钨尾矿 99.56 0.11 38.48 合计 100.00 0.29 100.00 表 4 不同条件下方解石和白钨矿的原子含量变化
Table 4. Atomic content of calcite and scheelite with different treatment
元素 C/% O/% Ca/% W/% Al/% 方解石 31.75 49.29 18.96 − 0 方解石+苛化淀粉 31.85 49.72 18.43 − 0 方解石+Al-淀粉 29.78 51.21 17.32 − 1.69 白钨矿 20.47 50.16 15.53 13.83 0 白钨矿+苛化淀粉 21.69 52.91 13.48 11.92 0 白钨矿+Al-淀粉 20.50 50.23 15.28 13.90 0.09 -
[1] SEDDON MARK. 全球钨资源和未来供应[J]. 中国钨业, 2001(Z1): 136−138.
SEDDON MARK. Global tungsten resources and future supply[J]. China Tungsten Industry, 2001(Z1): 136−138.
[2] 张洪川. 世界钨资源供需形势分析[D]. 北京: 中国地质大学, 2017.
ZHANG H C. World tungsten resource supply and demand situation analysis[D]. Beijing: China University of Geosciences, 2017.
[3] 王明燕, 贾木欣, 肖仪武, 等. 中国钨矿资源现状及可持续发展对策[J]. 有色金属工程, 2014, 4(2): 76−80.
WANG M Y, JIA M X, XIAO Y W, et al. Current situation and sustainable development strategy of tungsten mineral resources in China[J]. Non-ferrous Metal Engineering, 2014, 4(2): 76−80.
[4] WANG X, QIN W, JIAO F, et al. Review of tungsten resource reserves, tungsten concentrate production and tungsten beneficiation technology in China[J]. Transactions of Nonferrous Metals Society of China, 2022, 32(7): 2318−2338. doi: 10.1016/S1003-6326(22)65950-8
[5] 宁湘菡. 微细粒白钨矿与含钙脉石矿物浮选分离行为研究[D]. 赣州: 江西理工大学, 2020.
NING X H. Study on flotation separation behavior of fine scheelite from calcium gangue minerals[D]. Ganzhou: Jiangxi University of Science and Technology, 2020.
[6] 罗丽芳. 微细粒白钨矿选择性絮凝行为研究[D]. 赣州: 江西理工大学, 2019.
LUO L F. Study on selective flocculation behavior of fine scheelite[D]. Ganzhou: Jiangxi University of Science and Technology, 2019.
[7] CHEN W, CHEN F, BU X, et al. A significant improvement of fine scheelite flotation through rheological control of flotation pulp by using garnet[J]. Minerals Engineering, 2019, 138: 257−266. doi: 10.1016/j.mineng.2019.05.001
[8] WANG R, WEI Z, HAN H, et al. Fluorite particles as a novel calcite recovery depressant in scheelite flotation using Pb−BHA complexes as collectors[J]. Minerals Engineering, 2019, 132: 84−91. doi: 10.1016/j.mineng.2018.11.057
[9] WEI Z, HU Y, HAN H, et al. Selective flotation of scheelite from calcite using Al-Na2SiO3 polymer as depressant and Pb−BHA complexes as collector[J]. Minerals Engineering, 2018, 120: 29−34. doi: 10.1016/j.mineng.2018.01.036
[10] HU Y, CHI R, XU Z. Solution chemistry study of salt-type mineral flotation systems: role of inorganic[J]. Dispersants Industrial and Engineering Chemistry Research, 2003, 42(8): 1641−1647. doi: 10.1021/ie020729b
[11] LEE H, 卢文光. 形状和表面因素对细粒方解石浮选的影响[J]. 国外金属矿选矿, 1989(7): 39−43+33.
LEE H, LU W G. Influence of shape and surface factors on flotation of fine calcite[J]. Mineral Processing of Metal Ore Abroad, 1989(7): 39−43+33.
[12] LEE H, SMITH R W, 王力, 等. 颗粒形状和表面因素对细粒方解石浮选的影响[J]. 国外非金属矿, 1989(3): 12−17.
LEE H, SMITH R W, WANG L, et al. Effect of particle shape and surface factors on flotation of fine calcite. Foreign Non-metallic Ore, 1989(3): 12−17.
[13] ZHOU W, CHEN H, OU L, et al. Aggregation of ultra-fine scheelite particles induced by hydrodynamic cavitation[J]. International Journal of Mineral Processing, 2016, 157: 236−240. doi: 10.1016/j.minpro.2016.11.003
[14] CHEN W, FENG Q, ZHANG G, et al. Effect of energy input on flocculation process and flotation performance of fine scheelite using sodium oleate[J]. Minerals Engineering, 2017, 112: 27−35. doi: 10.1016/j.mineng.2017.07.002
[15] 王建军, 卫召, 韩海生, 等. 钨矿浮选药剂设计与组装[J]. 金属矿山, 2021(6): 26−43.
WANG J J, WEI Z, HAN H S, et al. Design and assembly of flotation reagent for tungsten ore[J]. Metal Mine, 2021(6): 26−43.
[16] 郑灿辉, 高延民, 谭晓飞, 等. 改性硅酸钠在低品位白钨矿浮选中的应用研究[J]. 中国钨业, 2018, 33(4): 58−61. doi: 10.3969/j.issn.1009-0622.2018.04.009
DENG C H, GAO Y M, TAN X F, et al. Application of modified sodium silicate in flotation of low grade scheelite[J]. China Tungsten Industry, 2018, 33(4): 58−61. doi: 10.3969/j.issn.1009-0622.2018.04.009
[17] 邱廷省, 宋宜富, 邱仙辉, 等. 白钨矿浮选体系中大分子有机抑制剂的抑制性能[J]. 中国有色金属学报, 2017, 27(7): 1527−1534.
QIU T S, SONG Y F, QIU X H, et al. Inhibition performance of macromolecular organic Inhibitors in scheelite flotation system[J]. Transactions of Nonferrous Metals Society of China. 2017, 27(7): 1527−1534.
[18] HAN H, HU Y, SUN W, et al. Fatty acid flotation versus BHA flotation of tungsten minerals and their performance in flotation practice[J]. International Journal of Mineral Processing, 2017, 159: 22−29. doi: 10.1016/j.minpro.2016.12.006
[19] 李彬, 李海普, 张莎莎, 等. 玉米直链淀粉、支链淀粉的分离、表征及浮选应用[J]. 矿产保护与利用, 2011(5/6): 64−68.
LI B, LI H P, ZHANG S S, et al. Separation, characterization and flotation application of amylose and amylopectin in maize[J]. Conservation and Utilization of Mineral Resources, 2011(5/6): 64−68.
[20] WEI Z, SUN W, HU Y, et al. Structures of Pb−BHA complexes adsorbed on scheelite surface[J]. Frontiers in Chemistry, 2019(7): 1−9. doi: 10.3389/fchem.2019.00001
[21] SUN W, HAN H, SUN W, et al. Novel insights into the role of colloidal calcium dioleate in the flotation of calcium minerals[J]. Minerals Engineering, 2022, 175: 107274. doi: 10.1016/j.mineng.2021.107274
[22] 孙文娟, 韩海生, 胡岳华, 等. 金属离子配位调控分子组装浮选理论及其研究进展[J]. 中国有色金属学报, 2020, 30(4): 927−941.
SUN W J, HAN H S, HU Y H, et al. Research progress in molecular assembly flotation of metal ions[J]. Transactions of Nonferrous Metals Society of China, 2020, 30(4): 927−941.
[23] YUE T, WU X. Depressing iron mineral by metallic-starch complex (MSC) in reverse flotation and its mechanism[J]. Minerals, 2018, 8(3): 85. doi: 10.3390/min8030085
[24] WANG R, HAN H, SUN W, et al. Hydrophobic behavior of fluorite surface in strongly alkaline solution and its application in flotation[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 609: 125661. doi: 10.1016/j.colsurfa.2020.125661
[25] WANG R, SUN W, HAN H, et al. Fluorite particles as a novel barite depressant in terms of surface transformation[J]. Minerals Engineering, 2021, 166: 106877. doi: 10.1016/j.mineng.2021.106877
[26] WANG R, HAN H, SUN W, et al. Slow−release of fluorite and its effect on flotation separation of magnesite from calcite[J]. Minerals Engineering, 2022, 185: 107707. doi: 10.1016/j.mineng.2022.107707
[27] MARENICH A V, CRAMER C J, TRUHLAR D G. Universal solvation model based on solute electron density and on a continuum model of the solvent defined by the bulk dielectric constant and atomic surface tensions[J]. Journal of Physical Chemistry B, 2009, 113(18): 6378−6396. doi: 10.1021/jp810292n
[28] ZHANG H, XU Z, SUN W, et al. Selective adsorption mechanism of dodecylamine on the hydrated surface of hematite and quartz[J]. Separation and Purification Technology, 2021, 275: 119137. doi: 10.1016/j.seppur.2021.119137
-