Al−淀粉配合物对白钨矿浮选中微细粒方解石的选择性抑制行为及机理

王若林, 韩海生, 孙文娟, 孙伟, 张洪亮, 程永彪. Al−淀粉配合物对白钨矿浮选中微细粒方解石的选择性抑制行为及机理[J]. 矿产保护与利用, 2023, 43(5): 1-10. doi: 10.13779/j.cnki.issn1001-0076.2023.05.001
引用本文: 王若林, 韩海生, 孙文娟, 孙伟, 张洪亮, 程永彪. Al−淀粉配合物对白钨矿浮选中微细粒方解石的选择性抑制行为及机理[J]. 矿产保护与利用, 2023, 43(5): 1-10. doi: 10.13779/j.cnki.issn1001-0076.2023.05.001
WANG Ruolin, HAN Haisheng, SUN Wenjuan, SUN Wei, ZHANG Hongliang, CHENG Yongbiao. Selective Inhibition Behavior and Mechanism of Al−starch Complex on Ultrafine Calcite in Scheelite Flotation[J]. Conservation and Utilization of Mineral Resources, 2023, 43(5): 1-10. doi: 10.13779/j.cnki.issn1001-0076.2023.05.001
Citation: WANG Ruolin, HAN Haisheng, SUN Wenjuan, SUN Wei, ZHANG Hongliang, CHENG Yongbiao. Selective Inhibition Behavior and Mechanism of Al−starch Complex on Ultrafine Calcite in Scheelite Flotation[J]. Conservation and Utilization of Mineral Resources, 2023, 43(5): 1-10. doi: 10.13779/j.cnki.issn1001-0076.2023.05.001

Al−淀粉配合物对白钨矿浮选中微细粒方解石的选择性抑制行为及机理

  • 基金项目: 国家自然科学基金委优秀青年项目(52122406);国家“十四五”重点研发计划项目(2022YFC2905105);湖南省高新技术产业科技创新引领计划(2022GK4056)
详细信息
    作者简介: 王若林(1993—),男,博士,从事矿物浮选与浮选药剂、复杂矿产资源高效回收与利用等研究
    通讯作者: 程永彪(1982—),男,高级工程师,从事矿产资源综合利用等研究。
  • 中图分类号: TD923+.14;TD954

Selective Inhibition Behavior and Mechanism of Al−starch Complex on Ultrafine Calcite in Scheelite Flotation

More Information
    Corresponding author: CHENG Yongbiao
  • 微细粒方解石与白钨矿嵌布连生紧密,其体积小、质量轻、比表面积大,难以高效抑制,严重影响钨浮选指标的提升。通过合成反应、团簇模型计算及红外光谱分析,研究了铝离子与淀粉的作用产物;通过单矿物及实际矿石浮选实验,与苛化淀粉对比,揭示了Al−淀粉的选择性抑制效果;通过Zeta电位、X射线光电子能谱,剖析了Al-淀粉对微细粒方解石的选择性抑制机理。结果表明,Al3+最容易与淀粉反式分子支链O6和邻近O1原子反应,生成键长最短的O1—Al—O6结构。苛化淀粉对白钨矿和方解石均产生抑制作用,而Al−淀粉只对微细粒方解石的浮选产生抑制效果,将钨精矿WO3品位由苛化淀粉的31.44%提升至40.51%,从而实现白钨矿与方解石的浮选分离。苛化淀粉通过羟基作用于白钨矿和方解石的表面,使两矿物的表面电位产生负偏移,影响两矿物表面的Ca、O特征原子。Al−淀粉通过金属基团,选择性地与方解石表面阴离子O位点发生化学吸附而不会与白钨矿表面发生作用,从而改变细方解石的表面电荷及特征原子,产生抑制作用。

  • 加载中
  • 图 1  单矿物X射线衍射分析结果(a—白钨矿;b—方解石)

    Figure 1. 

    图 2  实际矿石中白钨矿、方解石的MLA彩图

    Figure 2. 

    图 3  Al-淀粉分子的合成反应

    Figure 3. 

    图 4  淀粉单分子的NPA电荷分布(a—反式结构;b—顺式结构)

    Figure 4. 

    图 5  铝离子与淀粉单分子螯合配位的优化模型(a1~e1—Al3+−反式淀粉分子;a2~e2—Al3+−顺式淀粉分子)

    Figure 5. 

    图 6  淀粉和Al-淀粉红外特征峰的变化

    Figure 6. 

    图 7  Pb−BHA捕收剂体系下细粒级白钨矿与方解石的浮选回收率(c(Pb−BHA) = 1.5×10−4 mol/L,c(松油醇) = 12.5 µL/L)

    Figure 7. 

    图 8  不同质量比的Al−淀粉对白钨矿和方解石单矿物浮选的影响(pH = 8.5,c(淀粉) = 10 mg/L,c(Pb−BHA) = 1.5×10−4 mol/L,c(松油醇) = 12.5 µL/L)

    Figure 8. 

    图 9  Al−淀粉配合物闭路实验流程

    Figure 9. 

    图 10  抑制剂(a)及其对白钨矿(b)和方解石(c)Zeta电位的影响

    Figure 10. 

    图 11  抑制剂(a)、方解石(b)和白钨矿(c)的XPS总能谱

    Figure 11. 

    图 12  方解石表面的Ca2p (a) 和O1s (b)能谱

    Figure 12. 

    图 13  白钨矿表面的Ca2p(a)和O1s(b)能谱

    Figure 13. 

    表 1  主要矿物组成及含量分析结果

    Table 1.  Analysis results of mian mineral composition and content

    矿物含量/%矿物含量/%
    白钨矿0.23石英9.83
    黑钨矿0.10石榴石28.44
    锡石0.13长石11.45
    绿泥石1.46云母7.50
    萤石17.33其他8.05
    黄铁矿1.76
    方解石13.72合计100.00
    下载: 导出CSV

    表 2  实验所用药剂

    Table 2.  Reagents used in experiments

    药剂名称主要成分等级生产厂家
    氢氧化钠(粒状)NaOH分析纯天津恒兴化学试剂制造有限公司
    苯甲羟肟酸C7H7NO2分析纯上海梯希爱化成工业发展有限公司
    硝酸铅Pb(NO3)2分析纯西陇化工股份有限公司
    硫酸铝Al2(SO4)3分析纯国药集团化学试剂有限公司
    可溶性淀粉(C6H10O5)n分析纯国药集团化学试剂有限公司
    松油醇C10H18O分析纯上海麦克林生化科技有限公司
    BHAC7H7NO2工业级广州明特化工制药厂
    硝酸铅Pb(NO3)2工业级株洲选矿药剂厂
    硫酸铝Al2(SO4)3工业级长沙化工一厂
    水玻璃Na2mSiO2工业级长沙化工一厂
    下载: 导出CSV

    表 3  闭路实验结果

    Table 3.  Result of closed−circuit experiment

    实验变量产品产率/%WO3品位/%WO3回收率/%
    不加抑制剂钨精矿0.6031.4464.81
    钨尾矿99.400.1035.19
    合计100.000.29100.00
    加入20 g/t Al−淀粉钨精矿0.4440.161.52
    钨尾矿99.560.1138.48
    合计100.000.29100.00
    下载: 导出CSV

    表 4  不同条件下方解石和白钨矿的原子含量变化

    Table 4.  Atomic content of calcite and scheelite with different treatment

    元素C/%O/%Ca/%W/%Al/%
    方解石31.7549.2918.960
    方解石+苛化淀粉31.8549.7218.430
    方解石+Al-淀粉29.7851.2117.321.69
    白钨矿20.4750.1615.5313.830
    白钨矿+苛化淀粉21.6952.9113.4811.920
    白钨矿+Al-淀粉20.5050.2315.2813.900.09
    下载: 导出CSV
  • [1]

    SEDDON MARK. 全球钨资源和未来供应[J]. 中国钨业, 2001(Z1): 136−138.

    SEDDON MARK. Global tungsten resources and future supply[J]. China Tungsten Industry, 2001(Z1): 136−138.

    [2]

    张洪川. 世界钨资源供需形势分析[D]. 北京: 中国地质大学, 2017.

    ZHANG H C. World tungsten resource supply and demand situation analysis[D]. Beijing: China University of Geosciences, 2017.

    [3]

    王明燕, 贾木欣, 肖仪武, 等. 中国钨矿资源现状及可持续发展对策[J]. 有色金属工程, 2014, 4(2): 76−80.

    WANG M Y, JIA M X, XIAO Y W, et al. Current situation and sustainable development strategy of tungsten mineral resources in China[J]. Non-ferrous Metal Engineering, 2014, 4(2): 76−80.

    [4]

    WANG X, QIN W, JIAO F, et al. Review of tungsten resource reserves, tungsten concentrate production and tungsten beneficiation technology in China[J]. Transactions of Nonferrous Metals Society of China, 2022, 32(7): 2318−2338. doi: 10.1016/S1003-6326(22)65950-8

    [5]

    宁湘菡. 微细粒白钨矿与含钙脉石矿物浮选分离行为研究[D]. 赣州: 江西理工大学, 2020.

    NING X H. Study on flotation separation behavior of fine scheelite from calcium gangue minerals[D]. Ganzhou: Jiangxi University of Science and Technology, 2020.

    [6]

    罗丽芳. 微细粒白钨矿选择性絮凝行为研究[D]. 赣州: 江西理工大学, 2019.

    LUO L F. Study on selective flocculation behavior of fine scheelite[D]. Ganzhou: Jiangxi University of Science and Technology, 2019.

    [7]

    CHEN W, CHEN F, BU X, et al. A significant improvement of fine scheelite flotation through rheological control of flotation pulp by using garnet[J]. Minerals Engineering, 2019, 138: 257−266. doi: 10.1016/j.mineng.2019.05.001

    [8]

    WANG R, WEI Z, HAN H, et al. Fluorite particles as a novel calcite recovery depressant in scheelite flotation using Pb−BHA complexes as collectors[J]. Minerals Engineering, 2019, 132: 84−91. doi: 10.1016/j.mineng.2018.11.057

    [9]

    WEI Z, HU Y, HAN H, et al. Selective flotation of scheelite from calcite using Al-Na2SiO3 polymer as depressant and Pb−BHA complexes as collector[J]. Minerals Engineering, 2018, 120: 29−34. doi: 10.1016/j.mineng.2018.01.036

    [10]

    HU Y, CHI R, XU Z. Solution chemistry study of salt-type mineral flotation systems: role of inorganic[J]. Dispersants Industrial and Engineering Chemistry Research, 2003, 42(8): 1641−1647. doi: 10.1021/ie020729b

    [11]

    LEE H, 卢文光. 形状和表面因素对细粒方解石浮选的影响[J]. 国外金属矿选矿, 1989(7): 39−43+33.

    LEE H, LU W G. Influence of shape and surface factors on flotation of fine calcite[J]. Mineral Processing of Metal Ore Abroad, 1989(7): 39−43+33.

    [12]

    LEE H, SMITH R W, 王力, 等. 颗粒形状和表面因素对细粒方解石浮选的影响[J]. 国外非金属矿, 1989(3): 12−17.

    LEE H, SMITH R W, WANG L, et al. Effect of particle shape and surface factors on flotation of fine calcite. Foreign Non-metallic Ore, 1989(3): 12−17.

    [13]

    ZHOU W, CHEN H, OU L, et al. Aggregation of ultra-fine scheelite particles induced by hydrodynamic cavitation[J]. International Journal of Mineral Processing, 2016, 157: 236−240. doi: 10.1016/j.minpro.2016.11.003

    [14]

    CHEN W, FENG Q, ZHANG G, et al. Effect of energy input on flocculation process and flotation performance of fine scheelite using sodium oleate[J]. Minerals Engineering, 2017, 112: 27−35. doi: 10.1016/j.mineng.2017.07.002

    [15]

    王建军, 卫召, 韩海生, 等. 钨矿浮选药剂设计与组装[J]. 金属矿山, 2021(6): 26−43.

    WANG J J, WEI Z, HAN H S, et al. Design and assembly of flotation reagent for tungsten ore[J]. Metal Mine, 2021(6): 26−43.

    [16]

    郑灿辉, 高延民, 谭晓飞, 等. 改性硅酸钠在低品位白钨矿浮选中的应用研究[J]. 中国钨业, 2018, 33(4): 58−61. doi: 10.3969/j.issn.1009-0622.2018.04.009

    DENG C H, GAO Y M, TAN X F, et al. Application of modified sodium silicate in flotation of low grade scheelite[J]. China Tungsten Industry, 2018, 33(4): 58−61. doi: 10.3969/j.issn.1009-0622.2018.04.009

    [17]

    邱廷省, 宋宜富, 邱仙辉, 等. 白钨矿浮选体系中大分子有机抑制剂的抑制性能[J]. 中国有色金属学报, 2017, 27(7): 1527−1534.

    QIU T S, SONG Y F, QIU X H, et al. Inhibition performance of macromolecular organic Inhibitors in scheelite flotation system[J]. Transactions of Nonferrous Metals Society of China. 2017, 27(7): 1527−1534.

    [18]

    HAN H, HU Y, SUN W, et al. Fatty acid flotation versus BHA flotation of tungsten minerals and their performance in flotation practice[J]. International Journal of Mineral Processing, 2017, 159: 22−29. doi: 10.1016/j.minpro.2016.12.006

    [19]

    李彬, 李海普, 张莎莎, 等. 玉米直链淀粉、支链淀粉的分离、表征及浮选应用[J]. 矿产保护与利用, 2011(5/6): 64−68.

    LI B, LI H P, ZHANG S S, et al. Separation, characterization and flotation application of amylose and amylopectin in maize[J]. Conservation and Utilization of Mineral Resources, 2011(5/6): 64−68.

    [20]

    WEI Z, SUN W, HU Y, et al. Structures of Pb−BHA complexes adsorbed on scheelite surface[J]. Frontiers in Chemistry, 2019(7): 1−9. doi: 10.3389/fchem.2019.00001

    [21]

    SUN W, HAN H, SUN W, et al. Novel insights into the role of colloidal calcium dioleate in the flotation of calcium minerals[J]. Minerals Engineering, 2022, 175: 107274. doi: 10.1016/j.mineng.2021.107274

    [22]

    孙文娟, 韩海生, 胡岳华, 等. 金属离子配位调控分子组装浮选理论及其研究进展[J]. 中国有色金属学报, 2020, 30(4): 927−941.

    SUN W J, HAN H S, HU Y H, et al. Research progress in molecular assembly flotation of metal ions[J]. Transactions of Nonferrous Metals Society of China, 2020, 30(4): 927−941.

    [23]

    YUE T, WU X. Depressing iron mineral by metallic-starch complex (MSC) in reverse flotation and its mechanism[J]. Minerals, 2018, 8(3): 85. doi: 10.3390/min8030085

    [24]

    WANG R, HAN H, SUN W, et al. Hydrophobic behavior of fluorite surface in strongly alkaline solution and its application in flotation[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 609: 125661. doi: 10.1016/j.colsurfa.2020.125661

    [25]

    WANG R, SUN W, HAN H, et al. Fluorite particles as a novel barite depressant in terms of surface transformation[J]. Minerals Engineering, 2021, 166: 106877. doi: 10.1016/j.mineng.2021.106877

    [26]

    WANG R, HAN H, SUN W, et al. Slow−release of fluorite and its effect on flotation separation of magnesite from calcite[J]. Minerals Engineering, 2022, 185: 107707. doi: 10.1016/j.mineng.2022.107707

    [27]

    MARENICH A V, CRAMER C J, TRUHLAR D G. Universal solvation model based on solute electron density and on a continuum model of the solvent defined by the bulk dielectric constant and atomic surface tensions[J]. Journal of Physical Chemistry B, 2009, 113(18): 6378−6396. doi: 10.1021/jp810292n

    [28]

    ZHANG H, XU Z, SUN W, et al. Selective adsorption mechanism of dodecylamine on the hydrated surface of hematite and quartz[J]. Separation and Purification Technology, 2021, 275: 119137. doi: 10.1016/j.seppur.2021.119137

  • 加载中

(13)

(4)

计量
  • 文章访问数:  354
  • PDF下载数:  198
  • 施引文献:  0
出版历程
收稿日期:  2023-04-11
刊出日期:  2023-10-25

目录